Mesterséges Intelligencia Kurzusok

Mesterséges Intelligencia Kurzusok

A helyi, oktató által vezetett élő mesterséges intelligencia (AI) képzések gyakorlati gyakorlattal mutatják be, hogyan valósíthatók meg AI megoldások a valós problémák megoldására. Az AI képzés elérhető "helyszíni élő képzés" vagy "távoli élő képzés" formájában. A helyszíni élő képzés helyi szinten valósulhat meg az ügyfél telephelyén Magyarország vagy a NobleProg vállalati oktatóközpontjaiban Magyarország . A távoli élőképzés interaktív, távoli asztal segítségével történik. NobleProg - a helyi oktatási szolgáltató.

Machine Translated

Ajánlások

★★★★★
★★★★★

Mesterséges Intelligencia Course Outlines

Kurzusnév
Duration
Overview
Kurzusnév
Duration
Overview
14 hours
Overview
Ez a tanfolyam az AI-t (hangsúlyozza a Machine Learning és a Deep Learning ) az Automotive . Segít meghatározni, hogy mely technológiát lehet (potenciálisan) használni több helyzetben egy autóban: az egyszerű automatizálástól, a képfelismeréstől az autonóm döntéshozatalig.
21 hours
Overview
Ez a kurzus olyan emberek számára lett kialakítva, akik érdeklődnek az angol nyelvű szövegből származó jelentésből, bár a tudás más emberi nyelvekre is alkalmazható.

A kurzus kiterjed az emberek által írt szöveg használatára, például blogbejegyzésekre, tweetekre stb.

Például egy elemző létrehozhat egy algoritmust, amely a kiterjedt adatforrás alapján automatikusan megköti a következtetést.
21 hours
Overview
PredictionIO egy nyílt forráskódú Machine Learning kiszolgáló, amely a legmodernebb nyílt forráskódú verem tetején épült.

Közönség

Ez a kurzus olyan fejlesztőkre és adatkutatókra irányul, akik prediktív motorokat kívánnak létrehozni bármely gépi tanulási feladathoz.
14 hours
Overview
A mintaegyeztetés egy olyan módszer, amellyel meghatározzák a képen meghatározott mintákat. Ez felhasználható annak meghatározására, hogy a rögzített képen belül vannak-e meghatározott jellemzők, például a hibás termék várt címkéje a gyári sorban vagy az alkatrész meghatározott méretei. Ez különbözik a " Pattern Recognition " -től (amely a kapcsolódó minták nagyobb gyűjteményein alapuló általános mintákat ismeri fel) abban, hogy kifejezetten diktálja, mit keresünk, majd megmondja nekünk, hogy a várt minta létezik-e vagy sem.

A tantárgy formátuma

- Ez a tanfolyam bemutatja a mintázat-illesztés területén alkalmazott megközelítéseket, technológiákat és algoritmusokat, ahogy ez a Machine Vision .
21 hours
Overview
A PaddlePaddle (PArallel Distributed Deep LEarning) egy skálázható mélytanulási platform, amelyet Baidu fejlesztett ki Ebben az oktatott, élő képzésben a résztvevők megtanulják használni a PaddlePaddle használatát, hogy lehetővé tegyék a mély tanulás lehetőségét a termék- és szolgáltatásalkalmazásokban A képzés végére a résztvevők képesek lesznek: Állítsa be és konfigurálja a PaddlePaddle-t Konvolúciós neurális hálózat (CNN) létrehozása a képfelismeréshez és az objektumok észleléséhez Állítson be egy visszatérő neurális hálózatot (RNN) az érzelemelemzéshez Állítsa be mély tanulásukat az ajánlórendszerekre, hogy segítsen a felhasználóknak megtalálni a válaszokat Az átkattintási arányok (CTR) előrejelzése, nagy méretű képkészletek osztályozása, optikai karakterfelismerés (OCR) végrehajtása, keresések rangsorolása, számítógépes vírusok felderítése és ajánlórendszer alkalmazása Közönség Fejlesztők Adatkutatók A tanfolyam formátuma Részelőadás, vitafórumok, gyakorlatok és nehéz handson gyakorlat .
21 hours
Overview
Ez a kurzus gyakorlati megközelítést alkalmaz az OptaPlanner oktatására. Ez biztosítja a résztvevőknek az eszköz alapvető funkcióinak végrehajtásához szükséges eszközöket.
14 hours
Overview
Az OpenNN egy nyílt forráskódú osztálykönyvtár, amelyet C ++ -re írtak, és amely neurális hálózatokat valósít meg, gépi tanuláshoz.

Ebben a kurzusban átgondoljuk az ideghálózatok elveit, és használjuk az OpenNN-t egy mintaalkalmazás megvalósítására.

Közönség
A Deep Learning alkalmazások létrehozását kívánó szoftverfejlesztők és programozók.

A tanfolyam formátuma
Előadás és beszélgetés gyakorlati gyakorlattal párosulva.
7 hours
Overview
Ebben az oktató által vezetett, élő képzésen a résztvevők megtanulják, hogyan kell az OpenNMT t beállítani és használni a különféle mintaadatok fordításához. A tanfolyam a gépi fordításra alkalmazandó ideghálózatok áttekintésével kezdődik. A résztvevők az egész kurzuson élő gyakorlatokat végeznek, hogy megmutassák a megtanult fogalmak megértését és visszajelzéseket kapnak az oktatóktól.

A képzés végére a résztvevők rendelkeznek az élő OpenNMT megoldás megvalósításához szükséges ismeretekkel és gyakorlattal.

A forrás- és célnyelvi mintákat a közönség igényei szerint előre elkészítjük.

A tantárgy formátuma

- Rész előadás, rész vita, nehéz gyakorlati gyakorlat
14 hours
Overview
Az Apache OpenNLP könyvtár egy gépi tanulás alapú eszközkészlet a természetes nyelvű szövegek feldolgozásához Támogatja a leggyakoribb NLP-feladatokat, például a nyelvfelismerést, a tokenizálást, a mondatok szegmentálását, a partofspeech címkézést, az entitások kinyerését, a tagolást, az elemzést és a coreference-felbontást Ebben az oktatott, élő képzésben a résztvevők megtanulják, hogyan lehet modelleket létrehozni szöveges adatok feldolgozásához az OpenNLP használatával A laborgyakorlatok alapjául a mintaképzési adatok és a testreszabott adatkészletek szolgálnak A képzés végére a résztvevők képesek lesznek: Telepítse és konfigurálja az OpenNLP-t A meglévő modellek letöltése, valamint a saját létrehozása Tanítsa a modelleket a különböző mintaadatokra Integrálja az OpenNLP-t meglévő Java-alkalmazásokkal Közönség Fejlesztők Adatkutatók A tanfolyam formátuma Részelőadás, vitafórumok, gyakorlatok és nehéz handson gyakorlat .
14 hours
Overview
Az OpenFace Python és Torch alapú nyílt forráskódú, valós idejű arcfelismerő szoftver, amely a Google FaceNet kutatásán alapul Ebben az oktatott, élő képzésben a résztvevők megtudják, hogyan használják az OpenFace komponenseit egy minta arcfelismerő alkalmazás létrehozásához és telepítéséhez A képzés végére a résztvevők képesek lesznek: Munka OpenFace komponenseivel, beleértve a dlib-t, az OpenVC-t, a Torch-ot és az nn4-et az arcfelismerés, az illesztés és az átalakítás megvalósításához Alkalmazza az OpenFace-et realworld alkalmazásokra, mint például a felügyelet, a személyazonosság ellenőrzése, a virtuális valóság, a játék és az ismétlődő ügyfelek azonosítása stb Közönség Fejlesztők Adatkutatók A tanfolyam formátuma Részelőadás, vitafórumok, gyakorlatok és nehéz handson gyakorlat .
28 hours
Overview
OpenCV (Open Source Computer Vision Library: http://opencv.org) egy nyílt forráskódú BSD-licencű könyvtár, amely több száz számítógépes látás algoritmust tartalmaz.

Közönség

Ez a kurzus azokra a mérnökökre és építészekre irányul, akik az OpenCV használják számítógépes látásmód projektek számára
21 hours
Overview
A tanfolyamot azoknak ajánljuk, akik szeretnének egy alternatív programot megismerni a kereskedelmi MATLAB csomaggal A háromnapos képzés átfogó tájékoztatást nyújt a környezet körüli mozgatásáról és az OCTAVE csomag végrehajtásáról adatelemzési és mérnöki számításokhoz A képzésben résztvevők kezdők, de azok is, akik ismerik a programot, és szeretnék rendszeresíteni tudásukat és javítani tudásukat Más programozási nyelv ismerete nem szükséges, de nagyban megkönnyíti a tanulók tudásszerzését A kurzus megmutatja, hogyan kell használni a programot számos gyakorlati példában .
14 hours
Overview
Ez az osztálytermi alapú képzés prezentációkat és számítógépes példákat, valamint esettanulmány-gyakorlatokat fog tartalmazni a releváns neurális és mély hálózati könyvtárakkal együtt.
21 hours
Overview
Ez az osztálytermi alapú tréning az NLP technikákat fogja vizsgálni az AI és a Robotics alkalmazásával együtt A küldöttek számítógépes alapú példákat és esettanulmány-megoldási feladatokat vállalnak a Python használatával .
21 hours
Overview
A becslések szerint a strukturálatlan adatok az összes adat több mint 90 százalékát teszik ki, nagy részük szöveges formában. A blogbejegyzés, a tweet, a közösségi média és más digitális kiadványok folyamatosan bővítik ezt a növekvő adatmennyiséget.

Ez az oktató által irányított, élő tanfolyam ezen információkból nyer betekintést és jelentést. Az R Language és a Natural Language Processing (NLP) könyvtárakat ötvözve a számítógépes tudománytól, a mesterséges intelligenciától és a számítástechnológiától kezdve a fogalmakat és technikákat az algoritmikus megértéshez a szöveges adatok mögött. Az adatminták különböző nyelveken érhetők el vevői igények szerint.

A képzés végére a résztvevők képesek lesznek (nagy és kicsi) adatkészleteket elkészíteni eltérő forrásokból, majd a megfelelő algoritmusokat alkalmazni annak jelentőségének elemzésére és jelentésére.

A tantárgy formátuma

- Rész előadás, rész vita, nehéz gyakorlati gyakorlat, alkalmi tesztek a megértés felmérésére
21 hours
Overview
A természetes nyelvi termelés (NLG) a természetes nyelvű szöveg vagy beszéd előállítását jelenti Ebben az oktatott, élő képzésben a résztvevők megtanulják használni a Python-t, hogy magas minőségű természetes nyelvű szövegeket készítsenek saját NLG-rendszerüknek a semmiből Esettanulmányokat fognak megvizsgálni, és a releváns fogalmakat alkalmazni fogják az élőlabor-projektekhez tartalom generálásához A képzés végére a résztvevők képesek lesznek: Használja az NLG-t, hogy automatikusan generáljon tartalmat különböző iparágakra, az újságírásról az ingatlanra, az időjárás és a sportjelentésekre Válasszon és szervezzen forrástartalmat, tervezzen mondatokat, és készítsen egy rendszert az eredeti tartalom automatikus generálásához Ismerje meg az NLG csővezetéket, és alkalmazza a megfelelő technikákat minden szakaszban Értsd meg a Natural Language Generation (NLG) rendszer architektúráját Végezze el a legmegfelelőbb algoritmusokat és modelleket elemzéshez és rendeléshez A nyilvánosan elérhető adatforrásokból származó adatokat, valamint a feldolgozott szövegekhez használt kurátált adatbázisokat húzzuk meg Cserélje ki a kézi és munkaigényes írási folyamatokat számítógépes, automatizált tartalomkészítéssel Közönség Fejlesztők Adatkutatók A tanfolyam formátuma Részelőadás, vitafórumok, gyakorlatok és nehéz handson gyakorlat .
21 hours
Overview
Ebben az oktatott, élő képzésben a résztvevők megtanulják a legfontosabb és legelterjedtebb gépi tanulási technikákat a Pythonban, miközben olyan demó alkalmazásokat készítenek, amelyek képeket, zenéket, szövegeket és pénzügyi adatokat tartalmaznak A képzés végére a résztvevők képesek lesznek: Gépi tanulási algoritmusok és technikák végrehajtása komplex problémák megoldásához Alapos tanulás és félig felügyelt tanulás alkalmazása a képeket, zenéket, szöveget és pénzügyi adatokat tartalmazó alkalmazásokhoz Nyomja a Python algoritmusokat a maximális potenciáljukhoz Használjon olyan könyvtárakat és csomagokat, mint a NumPy és a Theano Közönség Fejlesztők Az elemzők Adatkutatók A tanfolyam formátuma Részelőadás, vitafórumok, gyakorlatok és nehéz handson gyakorlat .
28 hours
Overview
Ez a tanfolyam ismereteket fog nyújtani az idegi hálózatokban és általában a gépi tanulási algoritmusban, a mély tanulásban (algoritmusok és alkalmazások).

Ez a képzés nagyobb hangsúlyt alapjait, de segít kiválasztani a megfelelő technológia: TensorFlow , Caffe , Teano, DeepDrive, Keras stb A példák készülnek TensorFlow .
7 hours
Overview
A képzés célja azoknak az embereknek a célja, akik meg szeretnék tanulni a neurális hálózatok és alkalmazásuk alapjait.
21 hours
Overview
Ez az osztálytermi alapú edzés gépi tanulási eszközöket fedez fel a (javasolt) Python . A küldöttek számítógépes példákkal és esettanulmány-gyakorlatokkal fognak rendelkezni.
21 hours
Overview
Ez a kurzus bemutatja a gépi tanulási módszereket a robotika alkalmazásokban.

Ez egy széles körű áttekintés a meglévő módszerekről, motivációkról és főbb ötletekről a mintafelismerés összefüggésében.

Rövid elméleti háttér után a résztvevők egyszerű gyakorlatot végeznek nyílt forráskódú (általában R) vagy bármely más népszerű szoftver segítségével.
21 hours
Overview
a kurzus célja, hogy általános jártasságot biztosítson a gépi tanulási módszerek gyakorlati alkalmazásában. Segítségével a Python programozási nyelv és a különböző könyvtárak, és számos gyakorlati példa alapján ez a tanfolyam azt tanítja, hogyan kell használni a legfontosabb építőkövei a gépi tanulás, hogyan lehet az adatok modellezés döntéseket, értelmezni a az algoritmusok kimeneteit, és validálja az eredményeket.

célunk, hogy megadja a készségeket, hogy megértsék és használja a legalapvetőbb eszközöket a Machine learning eszközkészleten magabiztosan és elkerülni a közös buktatóit Data Sciences alkalmazások.
14 hours
Overview
Ez a tantermi alapú tréning fel fogja fedezni a gépi tanulási technikákat, számítógépes alapú példákkal és esettanulmány-megoldási gyakorlatokkal, .
14 hours
Overview
Ebben az oktatott, élő képzésben a résztvevők megtudják, hogyan használják az iOS gépi tanulási (ML) technológiai veremét, miközben átmennek egy iOS mobilalkalmazás létrehozásán és telepítésén A képzés végére a résztvevők képesek lesznek: Hozzon létre egy képes alkalmazást, szövegelemzést és beszédfelismerést lehetővé tevő mobilalkalmazást Hozzáférés az előcsatlakozott ML modellekhez az iOS alkalmazásokba történő integráláshoz Hozzon létre egy egyéni ML modellt Add hozzá Siri Voice támogatás az iOS-alkalmazásokhoz Megérteni és használni olyan kereteket, mint a coreML, a Vision, a CoreGraphics és a GamePlayKit Használjon olyan nyelveket és eszközöket, mint a Python, a Keras, a Caffee, a Tensorflow, a scikit tanul, a libsvm, az Anaconda és a Spyder Közönség Fejlesztők A tanfolyam formátuma Részelőadás, vitafórumok, gyakorlatok és nehéz handson gyakorlat .
7 hours
Overview
Ez a tanfolyam olyan emberek számára készült, akik gyakorlati alkalmazásokban szeretnék alkalmazni az alapvető Machine Learning technikákat.

Közönség

Azok a tudósok és statisztikusok, akik ismerik a gépi tanulást és tudják, hogyan kell R. programozni. A kurzus az adat / modell előkészítésének, végrehajtásának, post hoc elemzésének és vizualizációjának gyakorlati aspektusaira helyezi a hangsúlyt. A cél az, hogy gyakorlati bevezetést nyújtsunk a gépi tanuláshoz a résztvevők érdekeltek a módszerek alkalmazásában

Az ágazatspecifikus példákat arra használják, hogy a képzés a közönség számára releváns legyen.
14 hours
Overview
Ez a kurzus célja alapvető jártasság biztosítása a Machine Learning módszerek gyakorlati alkalmazásában. Az R programozási platformon és annak különféle könyvtárain keresztül, valamint számos gyakorlati példán alapul, ez a tanfolyam megtanítja, hogyan kell felhasználni a Machine Learning legfontosabb építőköveit, hogyan kell modellezési döntéseket hozni, értelmezni az algoritmusok kimeneteit és érvényesítse az eredményeket.

Célunk az, hogy képességeket nyújtsunk a Machine Learning eszköztár legalapvetőbb eszközeinek magabiztos megértéséhez és használatához, és elkerüljük az Data Science alkalmazásának gyakori hibáit.
14 hours
Overview
Ez a kurzus célja alapvető jártasság biztosítása a Machine Learning módszerek gyakorlati alkalmazásában. A Python programozási nyelv és annak különféle könyvtárainak felhasználásával, valamint számos gyakorlati példán alapul, ez a tanfolyam megtanítja, hogyan kell felhasználni a Machine Learning legfontosabb építőköveit, hogyan kell modellezési döntéseket hozni, értelmezni az algoritmusok kimeneteit és érvényesítse az eredményeket.

Célunk az, hogy képességeket nyújtsunk a Machine Learning eszköztár legalapvetőbb eszközeinek magabiztos megértéséhez és használatához, és elkerüljük az Data Science alkalmazásának gyakori hibáit.
14 hours
Overview
Ez a kurzus célja alapvető jártasság biztosítása a Machine Learning módszerek gyakorlati alkalmazásában. A Scala programozási nyelv és különféle könyvtárainak használatával, valamint számos gyakorlati példán alapul, ez a tanfolyam megtanítja, hogyan kell felhasználni a Machine Learning legfontosabb építőköveit, hogyan kell modellezési döntéseket hozni, hogyan kell értelmezni az algoritmusok kimeneteit és érvényesítse az eredményeket.

Célunk az, hogy képességeket nyújtsunk a Machine Learning eszköztár legalapvetőbb eszközeinek magabiztos megértéséhez és használatához, és elkerüljük az Data Science alkalmazásának gyakori hibáit.
28 hours
Overview
A gépi tanulás a mesterséges intelligencia egyik ága, amelyben a számítógépek képesek tanulni anélkül, hogy kifejezetten programoznák őket. R a pénzügyi iparban népszerű programozási nyelv. A pénzügyi alkalmazásokban használják, az alapkereskedelmi programoktól kezdve a kockázatkezelési rendszerekig.

Ebben az oktató által vezetett, élő képzésen a résztvevők megtanulják, hogyan lehet gépi tanulási technikákat és eszközöket alkalmazni a valós világbeli problémák megoldására a pénzügyi ágazatban. R programozási nyelv lesz.

A résztvevők először megtanulják a fő alapelveket, majd tudásukat a gyakorlatba ültetik saját gépi tanulási modelleik felépítésével és felhasználásával számos csapatprojekt megvalósításához.

A képzés végére a résztvevők képesek lesznek:

- Megérteni a gépi tanulás alapvető fogalmait
- Ismerje meg a gépi tanulás alkalmazásokat és felhasználásait a pénzügyekben
- Fejlesztse ki saját algoritmikus kereskedési stratégiáját az R gépi tanulással

Közönség

- Fejlesztők
- Adattudósok

A tantárgy formátuma

- Részleges előadás, részleges beszélgetés, gyakorlatok és nehéz gyakorlati gyakorlat
21 hours
Overview
A gépi tanulás a mesterséges intelligencia egyik ága, amelyben a számítógépek képesek tanulni anélkül, hogy kifejezetten programoznák őket. Python egy programozási nyelv, amely tiszta szintaxisáról és olvashatóságáról híres. Kiválóan bevált, jól bevált könyvtárak és technikák gyűjteményét kínálja a gépi tanulási alkalmazások fejlesztéséhez.

Ebben az oktató által vezetett, élő képzésen a résztvevők megtanulják, hogyan lehet gépi tanulási technikákat és eszközöket alkalmazni a valós világbeli problémák megoldására a pénzügyi ágazatban.

A résztvevők először megtanulják a fő alapelveket, majd tudásukat a gyakorlatba ültetik saját gépi tanulási modelleik felépítésével és felhasználásával számos csapatprojekt megvalósításához.

A képzés végére a résztvevők képesek lesznek:

- Megérteni a gépi tanulás alapvető fogalmait
- Ismerje meg a gépi tanulás alkalmazásokat és felhasználásait a pénzügyekben
- Készítsen saját algoritmikus kereskedési stratégiát a Python gépi tanulással

Közönség

- Fejlesztők
- Adattudósok

A tantárgy formátuma

- Részleges előadás, részleges beszélgetés, gyakorlatok és nehéz gyakorlati gyakorlat
Weekend AI (Artificial Intelligence) courses, Evening Mesterséges Intelligencia training, Mesterséges Intelligencia boot camp, AI instructor-led, Weekend AI (Artificial Intelligence) training, Evening AI courses, AI coaching, Artificial Intelligence instructor, AI (Artificial Intelligence) trainer, Mesterséges Intelligencia training courses, AI (Artificial Intelligence) classes, Mesterséges Intelligencia on-site, Mesterséges Intelligencia private courses, Artificial Intelligence one on one training

Course Discounts

Hírlevél kedvezmény

Tiszteletben tartjuk adatai bizalmas jellegét. A NobleProg soha nem továbbítja e-mail címét harmadik személyeknek.
Hírlevelünkről bármikor leiratkozhat.

Kiemelt ügyfeleink

is growing fast!

We are looking to expand our presence in Hungary!

As a Business Development Manager you will:

  • expand business in Hungary
  • recruit local talent (sales, agents, trainers, consultants)
  • recruit local trainers and consultants

We offer:

  • Artificial Intelligence and Big Data systems to support your local operation
  • high-tech automation
  • continuously upgraded course catalogue and content
  • good fun in international team

If you are interested in running a high-tech, high-quality training and consulting business.

Apply now!