Kurzusleírás

Introduction to Agent Builder and RAG

  • Overview of Agent Builder capabilities
  • RAG fundamentals and when to use them
  • Use cases and success stories

Setting Up the Environment

  • Configuring Vertex AI workspace
  • Connecting search and vector stores
  • Hands-on lab: environment preparation

Designing Grounded Agent Workflows

  • Defining agent goals and conversation flows
  • Mapping data sources to retrieval strategies
  • Hands-on lab: building a conversation flow

Implementing RAG Pipelines

  • Indexing documents and embeddings
  • Retriever and re-ranker patterns
  • Hands-on lab: creating a RAG pipeline

Integrations and Enterprise Data

  • Secure connectors to internal systems
  • Data governance and access controls
  • Hands-on lab: connecting enterprise data sources

Testing, Evaluation, and Iteration

  • Prompt testing and evaluation metrics
  • User simulation and validation strategies
  • Hands-on lab: evaluating and tuning the agent

Deployment, Monitoring, and Maintenance

  • Deployment options and scaling considerations
  • Monitoring performance, relevance, and drift
  • Operational playbooks for updates and rollback

Summary and Next Steps

Követelmények

  • Basic knowledge of natural language processing
  • Experience with cloud services and APIs
  • Familiarity with search and vector databases

Audience

  • Developers
  • Solution architects
  • Product managers
 14 Órák

Résztvevők száma


Ár résztvevőnként

Vélemények (1)

Közelgő kurzusok

Rokon kategóriák