Introduction to Transfer Learning Képzés
A transzfertanulás egy olyan gépi tanulási technika, amelyben egy adott feladathoz kifejlesztett modellt egy második feladat modelljének kiindulópontjaként újra felhasználják. Ez a kurzus bemutatja a transzfertanulás alapvető fogalmait, módszertanát és alkalmazásait, lehetővé téve a résztvevők számára, hogy az előre kiképzett modelleket hatékonyan alkalmazzák egyedi feladataikhoz.
Ez az oktató által vezetett, élő képzés (online vagy helyszíni) kezdő és középszintű gépi tanulási szakemberek számára készült, akik szeretnék megérteni és alkalmazni az átviteli tanulási technikákat az AI-projektek hatékonyságának és teljesítményének javítása érdekében.
A képzés végére a résztvevők képesek lesznek:
- Ismerje meg a transzfertanulás alapvető fogalmait és előnyeit.
- Fedezze fel a népszerű előre betanított modelleket és alkalmazásaikat.
- Végezze el az előre betanított modellek finomhangolását egyedi feladatokhoz.
- Alkalmazza az átviteli tanulást az NLP és a számítógépes látás valós problémáinak megoldására.
A tanfolyam formátuma
- Interaktív előadás és beszélgetés.
- Sok gyakorlat és gyakorlat.
- Gyakorlati megvalósítás élő labor környezetben.
Tanfolyam testreszabási lehetőségek
- Ha személyre szabott képzést szeretne kérni ehhez a tanfolyamhoz, kérjük, vegye fel velünk a kapcsolatot, hogy megbeszéljük.
Kurzusleírás
Introduction to Transfer Learning
- Mi az a transzfertanulás?
- Főbb előnyök és korlátok
- Miben különbözik a transzfertanulás a hagyományos gépi tanulástól
Az előre betanított modellek megértése
- A népszerű előre betanított modellek (pl. ResNet, BERT) áttekintése
- Modellarchitektúrák és főbb jellemzőik
- Előre betanított modellek alkalmazása tartományok között
Előképzett modellek finomhangolása
- A funkciók kivonása és finomhangolása
- A hatékony finomhangolás technikái
- A finomhangolás során kerülje a túlillesztést
Tanulás átvitele itt: Natural Language Processing (NLP)
- Nyelvi modellek adaptálása egyéni NLP-feladatokhoz
- Hugging Face Transformers használata NLP-hez
- Esettanulmány: Érzelemelemzés transzfer tanulással
Tanulás átvitele itt: Computer Vision
- Előre betanított látásmodellek adaptálása
- Transzfertanulás használata tárgyfelismerésre és osztályozásra
- Esettanulmány: Képosztályozás transzfer tanulással
Gyakorlati gyakorlatok
- Előképzett modellek betöltése és használata
- Előre betanított modell finomhangolása egy adott feladathoz
- A modell teljesítményének értékelése és az eredmények javítása
A transzfertanulás valós alkalmazásai
- Alkalmazások az egészségügyben, a pénzügyekben és a kiskereskedelemben
- Sikertörténetek és esettanulmányok
- A transzfertanulás jövőbeli trendjei és kihívásai
Összegzés és a következő lépések
Követelmények
- A gépi tanulási koncepciók alapvető ismerete
- Ismerkedés a neurális hálózatokkal és a mély tanulással
- Python programozási tapasztalat
Közönség
- Adattudósok
- A gépi tanulás szerelmesei
- AI szakemberek, akik modelladaptációs technikákat vizsgálnak
A nyílt képzésekhez 5+ résztvevő szükséges.
Introduction to Transfer Learning Képzés - Booking
Introduction to Transfer Learning Képzés - Enquiry
Introduction to Transfer Learning - Érdeklődjön a vezetői tanácsadásról!
Érdeklődjön a vezetői tanácsadásról!
Közelgő kurzusok
Rokon tanfolyam
Advanced Techniques in Transfer Learning
14 ÓrákEz az oktató által vezetett, élő képzés a Magyarország-ban (online vagy helyszíni) haladó szintű gépi tanulási szakembereket céloz meg, akik szeretnék elsajátítani a legmodernebb transzfertanulási technikákat, és alkalmazni kívánják azokat a valós világ összetett problémáira.
A képzés végére a résztvevők képesek lesznek:
- A transzfertanulás fejlett fogalmainak és módszereinek megértése.
- Alkalmazzon tartomány-specifikus adaptációs technikákat előre betanított modellekhez.
- Alkalmazza a folyamatos tanulást a fejlődő feladatok és adatkészletek kezeléséhez.
- Sajátítsa el a többfeladatos finomhangolást, hogy javítsa a modell teljesítményét a feladatok között.
Deploying Fine-Tuned Models in Production
21 ÓrákEz az oktató által vezetett, élő képzés a Magyarország-ban (online vagy helyszíni) haladó szintű szakembereknek szól, akik szeretnének megbízhatóan és hatékonyan bevezetni a finomhangolt modelleket.
A képzés végére a résztvevők képesek lesznek:
- Ismerje meg a finomhangolt modellek gyártásba történő bevezetésének kihívásait.
- Tárolja és telepítse a modelleket olyan eszközökkel, mint a Docker és Kubernetes.
- A telepített modellek megfigyelésének és naplózásának megvalósítása.
- Optimalizálja a modelleket a késleltetés és a méretezhetőség érdekében a valós forgatókönyvekben.
Domain-Specific Fine-Tuning for Finance
21 ÓrákEz az oktató által vezetett, élő képzés a Magyarország-ban (online vagy helyszíni) középszintű szakembereknek szól, akik gyakorlati készségekre szeretnének szert tenni az AI-modellek testreszabásában a kritikus pénzügyi feladatokhoz.
A képzés végére a résztvevők képesek lesznek:
- Ismerje meg a pénzügyi alkalmazások finomhangolásának alapjait.
- Használjon előre kiképzett modelleket a pénzügyi területen specifikus feladatokhoz.
- Alkalmazzon technikákat a csalások felderítésére, kockázatértékelésére és pénzügyi tanácsadásra.
- Biztosítsa a pénzügyi előírásoknak való megfelelést, például GDPR és SOX.
- Alkalmazzon adatbiztonsági és etikus mesterséges intelligencia gyakorlatokat a pénzügyi alkalmazásokban.
Fine-Tuning Models and Large Language Models (LLMs)
14 ÓrákEz az oktató által vezetett, élő képzés a Magyarország-ban (online vagy helyszíni) középszintű és haladó szintű szakembereket céloz meg, akik előre képzett modelleket szeretnének testreszabni bizonyos feladatokhoz és adatkészletekhez.
A képzés végére a résztvevők képesek lesznek:
- Ismerje a finomhangolás alapelveit és alkalmazásait.
- Készítsen adatkészleteket az előre betanított modellek finomhangolásához.
- Nagy nyelvi modellek (LLM) finomhangolása az NLP-feladatokhoz.
- Optimalizálja a modell teljesítményét és kezelje a gyakori kihívásokat.
Efficient Fine-Tuning with Low-Rank Adaptation (LoRA)
14 ÓrákEz az oktató által vezetett, élő képzés a Magyarország-ban (online vagy helyszíni) középszintű fejlesztőknek és AI-gyakorlóknak szól, akik nagy modellek finomhangolási stratégiáit kívánják megvalósítani anélkül, hogy kiterjedt számítási erőforrásokra lenne szükségük.
A képzés végére a résztvevők képesek lesznek:
- Ismerje meg a Low-Rank Adaptation (LoRA) alapelveit.
- Valósítsa meg a LoRA-t a nagy modellek hatékony finomhangolásához.
- Optimalizálja a finomhangolást az erőforrás-korlátos környezetekhez.
- Értékelje és telepítse a LoRA-hangolt modelleket a gyakorlati alkalmazásokhoz.
Fine-Tuning Multimodal Models
28 ÓrákEz az oktató által vezetett, élő képzés a Magyarország-ban (online vagy helyszíni) haladó szintű szakembereknek szól, akik szeretnék elsajátítani a multimodális modellek finomhangolását innovatív AI-megoldásokhoz.
A képzés végére a résztvevők képesek lesznek:
- Ismerje meg az olyan multimodális modellek felépítését, mint a CLIP és a Flamingo.
- A multimodális adatkészletek hatékony előkészítése és előfeldolgozása.
- A multimodális modellek finomhangolása meghatározott feladatokhoz.
- Optimalizálja a modelleket a valós alkalmazásokhoz és a teljesítményhez.
Fine-Tuning for Natural Language Processing (NLP)
21 ÓrákEz az oktató által vezetett, élő képzés a Magyarország-ban (online vagy helyszíni) középszintű szakembereknek szól, akik az előre betanított nyelvi modellek hatékony finomhangolásával szeretnék továbbfejleszteni NLP-projekteiket.
A képzés végére a résztvevők képesek lesznek:
- Ismerje meg az NLP-feladatok finomhangolásának alapjait.
- Finomhangolja az előre betanított modelleket, például a GPT-t, a BERT-t és a T5-öt bizonyos NLP-alkalmazásokhoz.
- Optimalizálja a hiperparamétereket a jobb modellteljesítmény érdekében.
- Értékelje és telepítse a finomhangolt modelleket valós forgatókönyvek szerint.
Fine-Tuning DeepSeek LLM for Custom AI Models
21 ÓrákEz az oktató által vezetett, élő képzés a Magyarország-ban (online vagy helyszíni) haladó szintű mesterségesintelligencia-kutatóknak, gépi tanulási mérnököknek és fejlesztőknek szól, akik szeretnének finomhangolni DeepSeek LLM-modelleket speciális mesterséges intelligencia-alkalmazások létrehozása érdekében. iparágak, tartományok vagy üzleti igények.
A képzés végére a résztvevők képesek lesznek:
- Ismerje meg az DeepSeek modellek architektúráját és képességeit, beleértve az DeepSeek-R1-et és DeepSeek-V3-at.
- Készítsen adatkészleteket és dolgozzon fel adatokat a finomhangoláshoz.
- Az DeepSeek LLM finomhangolása tartományspecifikus alkalmazásokhoz.
- Optimalizálja és hatékonyan telepítse a finomhangolt modelleket.
Fine-Tuning Large Language Models Using QLoRA
14 ÓrákEz az oktatóvezetésű, élő képzés Magyarország (online vagy helyszínen) az átlagos szintűtől a haladó szintűig terjedő machine learning mérnököknek, AI-fejlesztőknek és adattudósoknak szól, akik megtanulni szeretnének, hogyan használják a QLoRA-t nagy modellek hatékony finomhangolására specifikus feladatokhoz és testreszabásokhoz.
E képzés végén a résztvevők képesek lesznek:
- Megérteni a QLoRA és a kvantizálási technikák elméletét LLMs-re.
- Implementálni a QLoRA-t nagy nyelvmodellek finomhangolására doméntartományi alkalmazásokhoz.
- Optimálni a finomhangolás teljesítményét korlátozott számítógépes erőforrásokon kvantizálással.
- Hatékonyan telepíteni és értékelni finomhangolt modelleket valós világbeli alkalmazásokban.
Fine-Tuning with Reinforcement Learning from Human Feedback (RLHF)
14 ÓrákEz az oktatóvezetett, élő edzés Magyarország-ban (online vagy helyszínen) az advanced-level gépi tanulás mérnököknek és AI kutatóknak szól, akik szeretnék RLHF-ot alkalmazni, hogy nagy AI-modelleket finomítsanak kiváló teljesítmény, biztonság és egyeztetés érdekében.
Ez az edzés végén a résztvevők képesek lesznek:
- Megértetik az RLHF elméleti alapjait és azt, miért fontos a modern AI-fejlesztésben.
- Előkészítenek jutalommodelleket emberi visszajelzések alapján, hogy irányítsák a megerősítő tanulási folyamatokat.
- Finomítanak nagy nyelvmodelleket RLHF-technikákkal, hogy a kimenetek emberi preferenciákkal egyeztessenek.
- Alkalmaznak legjobb gyakorlatokat az RLHF-folyamatok skálázására gyártás szintű AI-rendszerekhez.
Optimizing Large Models for Cost-Effective Fine-Tuning
21 ÓrákEz az oktató által vezetett, élő képzés a Magyarország-ban (online vagy helyszíni) haladó szintű szakembereknek szól, akik szeretnék elsajátítani a nagy modellek optimalizálásának technikáit a valós helyzetekben történő költséghatékony finomhangolás érdekében.
A képzés végére a résztvevők képesek lesznek:
- Ismerje meg a nagy modellek finomhangolásával járó kihívásokat.
- Alkalmazzon elosztott képzési technikákat a nagy modelleken.
- Használja ki a modell kvantálását és metszését a hatékonyság érdekében.
- A hardverhasználat optimalizálása a finomhangolási feladatokhoz.
- A finomhangolt modelleket hatékonyan telepítse éles környezetben.
Prompt Engineering and Few-Shot Fine-Tuning
14 ÓrákEz az oktató által vezetett, élő képzés a Magyarország-ban (online vagy helyszíni) középszintű szakembereknek szól, akik szeretnék kihasználni az azonnali tervezés és a rövid távú tanulás erejét, hogy optimalizálják az LLM teljesítményét a valós alkalmazásokhoz.
A képzés végére a résztvevők képesek lesznek:
- Ismerje meg az azonnali tervezés és a néhány lépésben történő tanulás alapelveit.
- Hatékony promptok tervezése különféle NLP-feladatokhoz.
- Használja ki a néhány lépéses technikákat az LLM-ek minimális adatmennyiséggel történő adaptálásához.
- Optimalizálja az LLM teljesítményét a gyakorlati alkalmazásokhoz.
Troubleshooting Fine-Tuning Challenges
14 ÓrákEz az oktató által vezetett, élő képzés a Magyarország-ban (online vagy helyszíni) haladó szintű szakembereknek szól, akik szeretnék finomítani készségeiket a gépi tanulási modellekkel kapcsolatos finomhangolási kihívások diagnosztizálásában és megoldásában.
A képzés végére a résztvevők képesek lesznek:
- Diagnosztizálja az olyan problémákat, mint a túlillesztés, az alulillesztés és az adatkiegyensúlyozatlanság.
- A modellkonvergenciát javító stratégiák végrehajtása.
- Optimalizálja a finomhangoló csővezetékeket a jobb teljesítmény érdekében.
- A képzési folyamatok hibakeresése gyakorlati eszközök és technikák segítségével.