Hatékony Finomhangolás Alacsony Rangú Adaptációval (LoRA) Képzés
Az Alacsony Rangú Adaptáció (LoRA) egy modern technika, amely a nagyméretű modellek hatékony finomhangolását teszi lehetővé, csökkentve a hagyományos módszerek számítási és memóriaigényét. Ez a képzés gyakorlati útmutatást nyújt a LoRA használatához a előre betanított modellek feladatra szabásában, így ideális erőforrásokban korlátozott környezetekben.
Ez az oktató által vezetett, élő képzés (online vagy helyszínen) középhaladó szintű fejlesztők és AI szakemberek számára készült, akik nagy modellek finomhangolási stratégiáit szeretnék megvalósítani anélkül, hogy kiterjedt számítási erőforrásokra lenne szükségük.
A képzés végén a résztvevők képesek lesznek:
- Megérteni az Alacsony Rangú Adaptáció (LoRA) alapelveit.
- Megvalósítani a LoRA-t a nagy modellek hatékony finomhangolásához.
- Optimalizálni a finomhangolást erőforrásokban korlátozott környezetekben.
- Értékelni és üzembe helyezni a LoRA-val finomhangolt modelleket gyakorlati alkalmazásokhoz.
A képzés formátuma
- Interaktív előadás és vita.
- Számos gyakorlat és gyakorlás.
- Gyakorlati implementáció élő laboratóriumi környezetben.
Képzés testreszabási lehetőségek
- Ha testreszabott képzést szeretne kérni ehhez a kurzushoz, kérjük, lépjen kapcsolatba velünk a megbeszélés érdekében.
Kurzusleírás
Bevezetés az Alacsony Rangú Adaptációba (LoRA)
- Mi az a LoRA?
- A LoRA előnyei a hatékony finomhangolásban
- Összehasonlítás a hagyományos finomhangolási módszerekkel
A Finomhangolás Kihívásainak Megértése
- A hagyományos finomhangolás korlátai
- Számítási és memória korlátok
- Miért hatékony alternatíva a LoRA
A Környezet Beállítása
- Python és szükséges könyvtárak telepítése
- A Hugging Face Transformers és a PyTorch beállítása
- LoRA-kompatibilis modellek felfedezése
A LoRA Megvalósítása
- A LoRA módszertan áttekintése
- Előre betanított modellek adaptálása LoRA-val
- Finomhangolás specifikus feladatokhoz (pl. szövegosztályozás, összefoglalás)
A Finomhangolás Optimalizálása LoRA-val
- Hiperparaméterek hangolása LoRA esetén
- Modell teljesítmény értékelése
- Erőforrás-fogyasztás minimalizálása
Gyakorlati Laborok
- BERT finomhangolása LoRA-val szövegosztályozáshoz
- LoRA alkalmazása T5-re összefoglalási feladatokhoz
- Egyedi LoRA konfigurációk felfedezése speciális feladatokhoz
LoRA-val Finomhangolt Modellek Üzembehelyezése
- LoRA-val finomhangolt modellek exportálása és mentése
- LoRA modellek integrálása alkalmazásokba
- Modellek üzembehelyezése termelési környezetekben
Haladó Technikák a LoRA-ban
- LoRA kombinálása más optimalizációs módszerekkel
- LoRA skálázása nagyobb modellek és adathalmazok esetén
- Multimodális alkalmazások felfedezése LoRA-val
Kihívások és Ajánlott Eljárások
- Túlfittelés elkerülése LoRA-val
- Reprodukálhatóság biztosítása kísérletekben
- Hibakeresési és hibaelhárítási stratégiák
Jövőbeli Trendek a Hatékony Finomhangolásban
- Újító fejlesztések a LoRA és kapcsolódó módszerek területén
- LoRA alkalmazásai a valóságos AI-ban
- A hatékony finomhangolás hatása az AI fejlesztésére
Összefoglalás és Következő Lépések
Követelmények
- Alapvető gépi tanulási fogalmak ismerete
- Python programozás ismerete
- Tapasztalat mélytanulási keretrendszerekben, mint a TensorFlow vagy a PyTorch
Közönség
- Fejlesztők
- AI szakemberek
A nyílt képzésekhez 5+ résztvevő szükséges.
Hatékony Finomhangolás Alacsony Rangú Adaptációval (LoRA) Képzés - Foglalás
Hatékony Finomhangolás Alacsony Rangú Adaptációval (LoRA) Képzés - Érdeklődés
Hatékony Finomhangolás Alacsony Rangú Adaptációval (LoRA) - Érdeklődjön a vezetői tanácsadásról!
Érdeklődjön a vezetői tanácsadásról!
Közelgő kurzusok
Rokon tanfolyam
Haladó Technikák az Átviteli Tanulásban
14 ÓrákEz az oktató által vezetett, élő képzés Magyarország-ben (online vagy helyszíni) a haladó szintű gépi tanulási szakemberek számára készült, akik elsajátítani kívánják a legújabb átviteli tanulási technikákat és alkalmazni szeretnék őket összetett valós problémák megoldására.
A képzés végére a résztvevők képesek lesznek:
- Megérteni az átviteli tanulás haladó koncepcióit és módszertanait.
- Implementálni tartomány-specifikus adaptációs technikákat előre betanított modellekhez.
- Alkalmazni a folyamatos tanulást az evolváló feladatok és adathalmazok kezelésére.
- Elsajátítani a többfeladatú finomhangolást a modell teljesítményének javítására különböző feladatokban.
Finomhangolt modellek üzembe helyezése éles környezetben
21 ÓrákEz az oktató által vezetett, élő képzés Magyarország (online vagy helyszíni) haladó szintű szakembereknek szól, akik megbízhatóan és hatékonyan szeretnének finomhangolt modelleket üzembe helyezni.
A képzés végére a résztvevők képesek lesznek:
- Megérteni a finomhangolt modellek éles környezetbe történő üzembe helyezésének kihívásait.
- Modellek konténerbe helyezése és üzembe helyezése olyan eszközökkel, mint a Docker és a Kubernetes.
- Monitorozás és naplózás implementálása az üzembe helyezett modellekhez.
- Modellek optimalizálása késleltetés és skálázhatóság szempontjából valós forgatókönyvekben.
Tartományspecifikus Finomhangolás a Pénzügyekben
21 ÓrákEz az oktató által vezetett, élő képzés Magyarország (online vagy helyszíni) középszintű szakembereknek szól, akik gyakorlati készségeket szeretnének szerezni az AI-modellek pénzügyi feladatokhoz való testreszabásában.
A képzés végére a résztvevők képesek lesznek:
- Megérteni a pénzügyi alkalmazásokhoz szükséges finomhangolás alapjait.
- Előre betanított modellek felhasználása pénzügyi tartományspecifikus feladatokhoz.
- Csalásfelderítési, kockázatértékelési és pénzügyi tanácsadási technikák alkalmazása.
- Pénzügyi szabályozások, mint a GDPR és a SOX betartása.
- Adatbiztonsági és etikus AI-gyakorlatok implementálása pénzügyi alkalmazásokban.
Modellek és Nagy Nyelvi Modellek (LLM) Finomhangolása
14 ÓrákEz az oktató által vezetett, élő képzés Magyarország-ben (online vagy helyszíni) középhaladó és haladó szintű szakembereknek szól, akik előre betanított modelleket szeretnének testre szabni specifikus feladatokhoz és adathalmazokhoz.
A képzés végére a résztvevők képesek lesznek:
- Megérteni a finomhangolás alapelveit és alkalmazásait.
- Adathalmazok előkészítése az előre betanított modellek finomhangolásához.
- Nagy nyelvi modellek (LLM) finomhangolása NLP feladatokhoz.
- Modell teljesítmény optimalizálása és gyakori kihívások kezelése.
Multimodális Modellek Finomhangolása
28 ÓrákEz az oktató által vezetett, élő képzés Magyarország-ben (online vagy helyszíni) haladó szintű szakembereknek szól, akik szeretnék elsajátítani a multimodális modellek finomhangolását innovatív AI megoldásokhoz.
A képzés végére a résztvevők képesek lesznek:
- Megérteni a multimodális modellek architektúráját, például a CLIP és a Flamingo modelljeit.
- Hatékonyan előkészíteni és előfeldolgozni multimodális adathalmazokat.
- Multimodális modelleket finomhangolni specifikus feladatokhoz.
- Modelleket optimalizálni valós alkalmazásokhoz és teljesítményhez.
Finomhangolás a Természetes Nyelvfeldolgozás (NLP) területén
21 ÓrákEz az oktató által vezetett, élő képzés Magyarország (online vagy helyszíni) középszintű szakembereknek szól, akik hatékonyan szeretnék finomhangolni az előre betanított nyelvi modelleket NLP projektekben.
A képzés végére a résztvevők képesek lesznek:
- Megérteni a NLP feladatokhoz szükséges finomhangolás alapjait.
- GPT, BERT és T5 modelleket finomhangolni specifikus NLP alkalmazásokhoz.
- Hiperparaméterek optimalizálása a modell teljesítményének javításához.
- Finomhangolt modellek kiértékelése és üzembe helyezése valós forgatókönyvekben.
A DeepSeek LLM finomhangolása egyedi AI modellekhez
21 ÓrákEz az oktató által vezetett, élő képzés Magyarország (online vagy helyszínen) haladó szintű AI kutatóknak, gépi tanulási mérnököknek és fejlesztőknek szól, akik szeretnék finomhangolni a DeepSeek LLM modelleket, hogy specifikus iparágakhoz, domainekhez vagy üzleti igényekhez szabott AI alkalmazásokat hozzanak létre.
A képzés végére a résztvevők képesek lesznek:
- Megérteni a DeepSeek modellek architektúráját és képességeit, beleértve a DeepSeek-R1 és DeepSeek-V3 modelleket.
- Adathalmazok előkészítése és adatok előfeldolgozása a finomhangoláshoz.
- A DeepSeek LLM finomhangolása domain-specifikus alkalmazásokhoz.
- A finomhangolt modellek hatékony optimalizálása és üzembe helyezése.
Nagy nyelvi modellek finomhangolása QLoRA segítségével
14 ÓrákEz az oktató által vezetett, élő képzés Magyarország-ben (online vagy helyszíni) középhaladó és haladó szintű gépi tanulási mérnökök, AI fejlesztők és adattudósok számára készült, akik szeretnének megtanulni, hogyan használhatják a QLoRA-t nagy modellek hatékony finomhangolására specifikus feladatokhoz és testreszabásokhoz.
A képzés végére a résztvevők képesek lesznek:
- Megérteni a QLoRA és a kvantálási technikák elméletét az LLM-ek kapcsán.
- Megvalósítani a QLoRA-t nagy nyelvi modellek finomhangolásában területspecifikus alkalmazásokhoz.
- Optimalizálni a finomhangolás teljesítményét korlátozott számítási erőforrások mellett kvantálás segítségével.
- Hatékonyan üzembe helyezni és értékelni a finomhangolt modelleket valós alkalmazásokban.
Nyílt forráskódú LLM-ek finomhangolása (LLaMA, Mistral, Qwen stb.)
14 ÓrákEz az oktató által vezetett, élő képzés Magyarország-ben (online vagy helyszíni) középhaladó szintű ML szakemberek és AI fejlesztők számára készült, akik szeretnék finomhangolni és üzembe helyezni nyílt súlyú modelleket, mint például a LLaMA, Mistral és Qwen, konkrét üzleti vagy belső alkalmazásokhoz.
A képzés végére a résztvevők képesek lesznek:
- Megérteni az ökoszisztémát és a különbségeket a nyílt forráskódú LLM-ek között.
- Adatkészletek és finomhangolási konfigurációk előkészítése olyan modellekhez, mint a LLaMA, Mistral és Qwen.
- Finomhangolási folyamatok végrehajtása a Hugging Face Transformers és PEFT segítségével.
- Finomhangolt modellek értékelése, mentése és üzembe helyezése biztonságos környezetekben.
Finomhangolás Emberi Visszajelzésen Alapuló Megerősítő Tanulással (RLHF)
14 ÓrákEz az oktató által vezetett, élő képzés Magyarország (online vagy helyszíni) haladó szintű gépi tanulási mérnökök és AI kutatók számára készült, akik szeretnék alkalmazni az RLHF-t nagy AI modellek finomhangolására a kiváló teljesítmény, biztonság és összehangolás érdekében.
A képzés végén a résztvevők képesek lesznek:
- Megérteni az RLHF elméleti alapjait és annak jelentőségét a modern AI fejlesztésben.
- Emberi visszajelzésen alapuló jutalommodelleket implementálni a megerősítő tanulási folyamatok irányításához.
- Nagy nyelvi modelleket finomhangolni RLHF technikák segítségével, hogy a kimenetek összhangban legyenek az emberi preferenciákkal.
- Az RLHF munkafolyamatok skálázásának legjobb gyakorlatait alkalmazni termelési szintű AI rendszerekhez.
Nagy modellek optimalizálása költséghatékony finomhangoláshoz
21 ÓrákEz az oktató által vezetett, élő képzés Magyarország (online vagy helyszíni) haladó szintű szakembereknek szól, akik szeretnék elsajátítani a nagy modellek költséghatékony finomhangolására vonatkozó technikákat valós forgatókönyvekben.
A képzés végére a résztvevők képesek lesznek:
- Megérteni a nagy modellek finomhangolásának kihívásait.
- Alkalmazni az elosztott képzési technikákat nagy modelleken.
- Kihasználni a modell kvantálást és nyesést a hatékonyság érdekében.
- Optimalizálni a hardverhasználatot a finomhangolási feladatokhoz.
- Hatékonyan üzembe helyezni a finomhangolt modelleket éles környezetekben.
Prompt Engineering és Few-Shot Fine-Tuning
14 ÓrákEz az oktató által vezetett, élő képzés Magyarország-ben (online vagy helyszínen) középszintű szakembereknek szól, akik szeretnék kihasználni a prompt engineering és a few-shot learning erejét, hogy optimalizálják a LLM teljesítményét valós alkalmazásokhoz.
A képzés végére a résztvevők képesek lesznek:
- Megérteni a prompt engineering és a few-shot learning alapelveit.
- Hatékony promptokat tervezni különböző NLP feladatokhoz.
- Few-shot technikákkal adaptálni a LLM-eket minimális adattal.
- Optimalizálni a LLM teljesítményét gyakorlati alkalmazásokhoz.
Paraméterhatékony Finomhangolás (PEFT) Technikák Nagy Nyelvi Modellekhez
14 ÓrákEz az oktató által vezetett, élő képzés Magyarország-ben (online vagy helyszíni) középszintű adattudósok és AI mérnökök számára készült, akik hatékonyabban és költséghatékonyabban szeretnék finomhangolni a nagy nyelvi modelleket olyan módszerekkel, mint a LoRA, az Adapter Tuning és a Prefix Tuning.
A képzés végén a résztvevők képesek lesznek:
- Megérteni a paraméterhatékony finomhangolási módszerek elméletét.
- Megvalósítani a LoRA, Adapter Tuning és Prefix Tuning technikákat a Hugging Face PEFT használatával.
- Összehasonlítani a PEFT módszerek teljesítményét és költségeit a teljes finomhangolással szemben.
- Üzembe helyezni és skálázni a finomhangolt LLM modelleket csökkentett számítási és tárolási igényekkel.
Bevezetés a Transfer Learningbe
14 ÓrákEz az oktató által vezetett, élő képzés Magyarország-ben (online vagy helyszíni) kezdő és középhaladó szintű gépi tanulással foglalkozó szakembereknek szól, akik meg szeretnék érteni és alkalmazni a transfer learning technikákat az AI projektek hatékonyságának és teljesítményének javítására.
A képzés végére a résztvevők képesek lesznek:
- Megérteni a transfer learning alapvető fogalmait és előnyeit.
- Felfedezni a népszerű előre betanított modelleket és azok alkalmazásait.
- Előre betanított modellek finomhangolását végrehajtani egyedi feladatokra.
- Alkalmazni a transfer learninget valós problémák megoldására a természetes nyelvfeldolgozás (NLP) és a számítógépes látás területén.
Finomhangolási Kihívások Hibaelhárítása
14 ÓrákEz az oktató által vezetett, élő képzés Magyarország (online vagy helyszíni) haladó szintű szakembereknek szól, akik szeretnék finomítani a gépi tanulási modellek finomhangolási kihívásainak diagnosztizálásában és megoldásában való készségeiket.
A képzés végére a résztvevők képesek lesznek:
- Diagnosztizálni a túlilleszkedést, alulilleszkedést és az adateltolódást.
- Stratégiákat implementálni a modell konvergencia javítására.
- Finomhangolási folyamatokat optimalizálni a jobb teljesítmény érdekében.
- Gyakorlati eszközökkel és technikákkal hibakeresést végezni a tanulási folyamatban.