Domain-Specific Fine-Tuning for Finance Képzés
A Domain-Specific Fine-Tuning az előre képzett mesterséges intelligencia modellek adaptálásának folyamata, hogy megfeleljenek egy adott iparág egyedi követelményeinek és kihívásainak. A pénzügyekkel összefüggésben lehetővé teszi olyan feladatokra szabott mesterséges intelligencia megoldások fejlesztését, mint a csalásfelderítés, kockázatelemzés és automatizált pénzügyi tanácsadás. Ez a kurzus a pénzügyi adatokkal való munka egyedi kihívásaival foglalkozik, beleértve a szabályozási megfelelést, az etikus mesterséges intelligencia és az adatbiztonságot.
Ez az oktató által vezetett, élő képzés (online vagy helyszíni) középszintű szakembereknek szól, akik gyakorlati készségeket szeretnének elsajátítani az AI-modellek testreszabásában a kritikus pénzügyi feladatokhoz.
A képzés végére a résztvevők képesek lesznek:
- Ismerje meg a pénzügyi alkalmazások finomhangolásának alapjait.
- Használjon előre kiképzett modelleket a pénzügyi területen specifikus feladatokhoz.
- Alkalmazzon technikákat a csalások felderítésére, kockázatértékelésére és pénzügyi tanácsadásra.
- Biztosítsa a pénzügyi előírásoknak való megfelelést, például GDPR és SOX.
- Alkalmazzon adatbiztonsági és etikus mesterséges intelligencia gyakorlatokat a pénzügyi alkalmazásokban.
A tanfolyam formátuma
- Interaktív előadás és beszélgetés.
- Sok gyakorlat és gyakorlat.
- Gyakorlati megvalósítás élő labor környezetben.
Tanfolyam testreszabási lehetőségek
- Ha személyre szabott képzést szeretne kérni ehhez a tanfolyamhoz, kérjük, vegye fel velünk a kapcsolatot, hogy megbeszéljük.
Kurzusleírás
Bevezetés a domain-specifikus Fine-Tuning
- A finomhangolási technikák áttekintése
- Kihívások a pénzügyi területen
- Esettanulmányok az AI-ról a pénzügyekben
Előre betanított modellek pénzügyi alkalmazásokhoz
- A népszerű előre betanított modellek (pl. GPT, BERT) bemutatása
- A pénzügyi feladatokhoz megfelelő modellek kiválasztása
- Adatok előkészítése a pénzügyek finomhangolásához
Fine-Tuning a kulcsfontosságú pénzügyi feladatokhoz
- Csalásfelderítés gépi tanulási modellekkel
- Kockázatértékelés prediktív modellezéssel
- Automatizált pénzügyi tanácsadó rendszerek kiépítése
Pénzügyi adatokkal kapcsolatos kihívások kezelése
- Érzékeny és kiegyensúlyozatlan adatok kezelése
- Az adatok titkosságának és biztonságának biztosítása
- Pénzügyi szabályozások integrálása a mesterséges intelligencia munkafolyamataiba
Etikai és szabályozási megfontolások
- Etikus mesterséges intelligencia gyakorlatok a pénzügyi szektorban
- Megfelelés GDPR és SOX
- Az átláthatóság megőrzése az AI modellekben
Modellek méretezése és telepítése
- Modellek optimalizálása a termelésben történő bevezetéshez
- A modell teljesítményének felügyelete és karbantartása
- A pénzügyi alkalmazások méretezhetőségének legjobb gyakorlatai
Valós alkalmazások és esettanulmányok
- Csalásfelderítő rendszerek
- Kockázatmodellezés befektetési portfóliókhoz
- AI-alapú ügyfélszolgálat a pénzügyekben
Összegzés és a következő lépések
Követelmények
- A gépi tanulás alapvető ismerete
- Ismerkedés a Python programozással
- Pénzügyi fogalmak és terminológia ismerete
Közönség
- Pénzügyi elemzők
- AI szakemberek a pénzügyekben
A nyílt képzésekhez 5+ résztvevő szükséges.
Domain-Specific Fine-Tuning for Finance Képzés - Booking
Domain-Specific Fine-Tuning for Finance Képzés - Enquiry
Domain-Specific Fine-Tuning for Finance - Érdeklődjön a vezetői tanácsadásról!
Érdeklődjön a vezetői tanácsadásról!
Közelgő kurzusok
Rokon tanfolyam
Advanced Techniques in Transfer Learning
14 ÓrákEz az oktató által vezetett, élő képzés a Magyarország-ban (online vagy helyszíni) haladó szintű gépi tanulási szakembereket céloz meg, akik szeretnék elsajátítani a legmodernebb transzfertanulási technikákat, és alkalmazni kívánják azokat a valós világ összetett problémáira.
A képzés végére a résztvevők képesek lesznek:
- A transzfertanulás fejlett fogalmainak és módszereinek megértése.
- Alkalmazzon tartomány-specifikus adaptációs technikákat előre betanított modellekhez.
- Alkalmazza a folyamatos tanulást a fejlődő feladatok és adatkészletek kezeléséhez.
- Sajátítsa el a többfeladatos finomhangolást, hogy javítsa a modell teljesítményét a feladatok között.
Deploying Fine-Tuned Models in Production
21 ÓrákEz az oktató által vezetett, élő képzés a Magyarország-ban (online vagy helyszíni) haladó szintű szakembereknek szól, akik szeretnének megbízhatóan és hatékonyan bevezetni a finomhangolt modelleket.
A képzés végére a résztvevők képesek lesznek:
- Ismerje meg a finomhangolt modellek gyártásba történő bevezetésének kihívásait.
- Tárolja és telepítse a modelleket olyan eszközökkel, mint a Docker és Kubernetes.
- A telepített modellek megfigyelésének és naplózásának megvalósítása.
- Optimalizálja a modelleket a késleltetés és a méretezhetőség érdekében a valós forgatókönyvekben.
Fine-Tuning Models and Large Language Models (LLMs)
14 ÓrákEz az oktató által vezetett, élő képzés a Magyarország-ban (online vagy helyszíni) középszintű és haladó szintű szakembereket céloz meg, akik előre képzett modelleket szeretnének testreszabni bizonyos feladatokhoz és adatkészletekhez.
A képzés végére a résztvevők képesek lesznek:
- Ismerje a finomhangolás alapelveit és alkalmazásait.
- Készítsen adatkészleteket az előre betanított modellek finomhangolásához.
- Nagy nyelvi modellek (LLM) finomhangolása az NLP-feladatokhoz.
- Optimalizálja a modell teljesítményét és kezelje a gyakori kihívásokat.
Efficient Fine-Tuning with Low-Rank Adaptation (LoRA)
14 ÓrákEz az oktató által vezetett, élő képzés a Magyarország-ban (online vagy helyszíni) középszintű fejlesztőknek és AI-gyakorlóknak szól, akik nagy modellek finomhangolási stratégiáit kívánják megvalósítani anélkül, hogy kiterjedt számítási erőforrásokra lenne szükségük.
A képzés végére a résztvevők képesek lesznek:
- Ismerje meg a Low-Rank Adaptation (LoRA) alapelveit.
- Valósítsa meg a LoRA-t a nagy modellek hatékony finomhangolásához.
- Optimalizálja a finomhangolást az erőforrás-korlátos környezetekhez.
- Értékelje és telepítse a LoRA-hangolt modelleket a gyakorlati alkalmazásokhoz.
Fine-Tuning Multimodal Models
28 ÓrákEz az oktató által vezetett, élő képzés a Magyarország-ban (online vagy helyszíni) haladó szintű szakembereknek szól, akik szeretnék elsajátítani a multimodális modellek finomhangolását innovatív AI-megoldásokhoz.
A képzés végére a résztvevők képesek lesznek:
- Ismerje meg az olyan multimodális modellek felépítését, mint a CLIP és a Flamingo.
- A multimodális adatkészletek hatékony előkészítése és előfeldolgozása.
- A multimodális modellek finomhangolása meghatározott feladatokhoz.
- Optimalizálja a modelleket a valós alkalmazásokhoz és a teljesítményhez.
Fine-Tuning for Natural Language Processing (NLP)
21 ÓrákEz az oktató által vezetett, élő képzés a Magyarország-ban (online vagy helyszíni) középszintű szakembereknek szól, akik az előre betanított nyelvi modellek hatékony finomhangolásával szeretnék továbbfejleszteni NLP-projekteiket.
A képzés végére a résztvevők képesek lesznek:
- Ismerje meg az NLP-feladatok finomhangolásának alapjait.
- Finomhangolja az előre betanított modelleket, például a GPT-t, a BERT-t és a T5-öt bizonyos NLP-alkalmazásokhoz.
- Optimalizálja a hiperparamétereket a jobb modellteljesítmény érdekében.
- Értékelje és telepítse a finomhangolt modelleket valós forgatókönyvek szerint.
Fine-Tuning DeepSeek LLM for Custom AI Models
21 ÓrákEz az oktató által vezetett, élő képzés a Magyarország-ban (online vagy helyszíni) haladó szintű mesterségesintelligencia-kutatóknak, gépi tanulási mérnököknek és fejlesztőknek szól, akik szeretnének finomhangolni DeepSeek LLM-modelleket speciális mesterséges intelligencia-alkalmazások létrehozása érdekében. iparágak, tartományok vagy üzleti igények.
A képzés végére a résztvevők képesek lesznek:
- Ismerje meg az DeepSeek modellek architektúráját és képességeit, beleértve az DeepSeek-R1-et és DeepSeek-V3-at.
- Készítsen adatkészleteket és dolgozzon fel adatokat a finomhangoláshoz.
- Az DeepSeek LLM finomhangolása tartományspecifikus alkalmazásokhoz.
- Optimalizálja és hatékonyan telepítse a finomhangolt modelleket.
Fine-Tuning Large Language Models Using QLoRA
14 ÓrákEz az oktatóvezetésű, élő képzés Magyarország (online vagy helyszínen) az átlagos szintűtől a haladó szintűig terjedő machine learning mérnököknek, AI-fejlesztőknek és adattudósoknak szól, akik megtanulni szeretnének, hogyan használják a QLoRA-t nagy modellek hatékony finomhangolására specifikus feladatokhoz és testreszabásokhoz.
E képzés végén a résztvevők képesek lesznek:
- Megérteni a QLoRA és a kvantizálási technikák elméletét LLMs-re.
- Implementálni a QLoRA-t nagy nyelvmodellek finomhangolására doméntartományi alkalmazásokhoz.
- Optimálni a finomhangolás teljesítményét korlátozott számítógépes erőforrásokon kvantizálással.
- Hatékonyan telepíteni és értékelni finomhangolt modelleket valós világbeli alkalmazásokban.
Fine-Tuning with Reinforcement Learning from Human Feedback (RLHF)
14 ÓrákEz az oktatóvezetett, élő edzés Magyarország-ban (online vagy helyszínen) az advanced-level gépi tanulás mérnököknek és AI kutatóknak szól, akik szeretnék RLHF-ot alkalmazni, hogy nagy AI-modelleket finomítsanak kiváló teljesítmény, biztonság és egyeztetés érdekében.
Ez az edzés végén a résztvevők képesek lesznek:
- Megértetik az RLHF elméleti alapjait és azt, miért fontos a modern AI-fejlesztésben.
- Előkészítenek jutalommodelleket emberi visszajelzések alapján, hogy irányítsák a megerősítő tanulási folyamatokat.
- Finomítanak nagy nyelvmodelleket RLHF-technikákkal, hogy a kimenetek emberi preferenciákkal egyeztessenek.
- Alkalmaznak legjobb gyakorlatokat az RLHF-folyamatok skálázására gyártás szintű AI-rendszerekhez.
Optimizing Large Models for Cost-Effective Fine-Tuning
21 ÓrákEz az oktató által vezetett, élő képzés a Magyarország-ban (online vagy helyszíni) haladó szintű szakembereknek szól, akik szeretnék elsajátítani a nagy modellek optimalizálásának technikáit a valós helyzetekben történő költséghatékony finomhangolás érdekében.
A képzés végére a résztvevők képesek lesznek:
- Ismerje meg a nagy modellek finomhangolásával járó kihívásokat.
- Alkalmazzon elosztott képzési technikákat a nagy modelleken.
- Használja ki a modell kvantálását és metszését a hatékonyság érdekében.
- A hardverhasználat optimalizálása a finomhangolási feladatokhoz.
- A finomhangolt modelleket hatékonyan telepítse éles környezetben.
Prompt Engineering and Few-Shot Fine-Tuning
14 ÓrákEz az oktató által vezetett, élő képzés a Magyarország-ban (online vagy helyszíni) középszintű szakembereknek szól, akik szeretnék kihasználni az azonnali tervezés és a rövid távú tanulás erejét, hogy optimalizálják az LLM teljesítményét a valós alkalmazásokhoz.
A képzés végére a résztvevők képesek lesznek:
- Ismerje meg az azonnali tervezés és a néhány lépésben történő tanulás alapelveit.
- Hatékony promptok tervezése különféle NLP-feladatokhoz.
- Használja ki a néhány lépéses technikákat az LLM-ek minimális adatmennyiséggel történő adaptálásához.
- Optimalizálja az LLM teljesítményét a gyakorlati alkalmazásokhoz.
Introduction to Transfer Learning
14 ÓrákEz az oktató által vezetett, élő képzés a Magyarország-ban (online vagy helyszíni) kezdő és középszintű gépi tanulási szakemberek számára készült, akik szeretnék megérteni és alkalmazni az átviteli tanulási technikákat az AI-projektek hatékonyságának és teljesítményének javítása érdekében.
A képzés végére a résztvevők képesek lesznek:
- Ismerje meg a transzfertanulás alapvető fogalmait és előnyeit.
- Fedezze fel a népszerű előre betanított modelleket és alkalmazásaikat.
- Végezze el az előre betanított modellek finomhangolását egyedi feladatokhoz.
- Alkalmazza az átviteli tanulást az NLP és a számítógépes látás valós problémáinak megoldására.
Troubleshooting Fine-Tuning Challenges
14 ÓrákEz az oktató által vezetett, élő képzés a Magyarország-ban (online vagy helyszíni) haladó szintű szakembereknek szól, akik szeretnék finomítani készségeiket a gépi tanulási modellekkel kapcsolatos finomhangolási kihívások diagnosztizálásában és megoldásában.
A képzés végére a résztvevők képesek lesznek:
- Diagnosztizálja az olyan problémákat, mint a túlillesztés, az alulillesztés és az adatkiegyensúlyozatlanság.
- A modellkonvergenciát javító stratégiák végrehajtása.
- Optimalizálja a finomhangoló csővezetékeket a jobb teljesítmény érdekében.
- A képzési folyamatok hibakeresése gyakorlati eszközök és technikák segítségével.