Köszönjük, hogy elküldte érdeklődését! Csapatunk egyik tagja hamarosan felveszi Önnel a kapcsolatot.
Köszönjük, hogy elküldte foglalását! Csapatunk egyik tagja hamarosan felveszi Önnel a kapcsolatot.
Kurzusleírás
Overview of Speech Recognition Technologies
- History and evolution of speech recognition
- Acoustic models, language models, and decoding
- Modern architectures: RNNs, transformers, and Whisper
Audio Preprocessing and Transcription Basics
- Handling audio formats and sample rates
- Cleaning, trimming, and segmenting audio
- Generating text from audio: real-time vs batch
Hands-on with Whisper and Other APIs
- Installing and using OpenAI Whisper
- Calling cloud APIs (Google, Azure) for transcription
- Comparing performance, latency, and cost
Language, Accents, and Domain Adaptation
- Working with multiple languages and accents
- Custom vocabularies and noise tolerance
- Legal, medical, or technical language handling
Output Formatting and Integration
- Adding timestamps, punctuation, and speaker labels
- Exporting to text, SRT, or JSON formats
- Integrating transcriptions into apps or databases
Use Case Implementation Labs
- Transcribing meetings, interviews, or podcasts
- Voice-to-text command systems
- Real-time captions for video/audio streams
Evaluation, Limitations, and Ethics
- Accuracy metrics and model benchmarking
- Bias and fairness in speech models
- Privacy and compliance considerations
Summary and Next Steps
Követelmények
- An understanding of general AI and machine learning concepts
- Familiarity with audio or media file formats and tools
Audience
- Data scientists and AI engineers working with voice data
- Software developers building transcription-based applications
- Organizations exploring speech recognition for automation
14 Órák