Köszönjük, hogy elküldte érdeklődését! Csapatunk egyik tagja hamarosan felveszi Önnel a kapcsolatot.
Köszönjük, hogy elküldte foglalását! Csapatunk egyik tagja hamarosan felveszi Önnel a kapcsolatot.
Kurzusleírás
Advanced LangGraph Architecture
- Graph topology patterns: nodes, edges, routers, subgraphs
- State modeling: channels, message passing, persistence
- DAG vs cyclic flows and hierarchical composition
Performance and Optimization
- Parallelism and concurrency patterns in Python
- Caching, batching, tool calling, and streaming
- Cost controls and token budgeting strategies
Reliability Engineering
- Retries, timeouts, backoff, and circuit breaking
- Idempotency and deduplication of steps
- Checkpointing and recovery using local or cloud stores
Debugging Complex Graphs
- Step-through execution and dry runs
- State inspection and event tracing
- Reproducing production issues with seeds and fixtures
Observability and Monitoring
- Structured logging and distributed tracing
- Operational metrics: latency, reliability, token usage
- Dashboards, alerts, and SLO tracking
Deployment and Operations
- Packaging graphs as services and containers
- Configuration management and secrets handling
- CI/CD pipelines, rollouts, and canaries
Quality, Testing, and Safety
- Unit, scenario, and automated eval harnesses
- Guardrails, content filtering, and PII handling
- Red teaming and chaos experiments for robustness
Summary and Next Steps
Követelmények
- An understanding of Python and asynchronous programming
- Experience with LLM application development
- Familiarity with basic LangGraph or LangChain concepts
Audience
- AI platform engineers
- DevOps for AI
- ML architects handling production LangGraph systems
35 Órák