TensorFlow Kurzusok

TensorFlow Kurzusok

A helyi, oktatók által vezetett élő TensorFlow képzési tanfolyamok interaktív beszélgetés és gyakorlati gyakorlat révén demonstrálják, hogyan lehet a TensorFlow rendszert felhasználni a gépi tanulás során végzett kutatások megkönnyítésére, valamint a kutatási prototípusról a termelési rendszerre való gyors és egyszerű átmenet elősegítésére. TensorFlow edzés „helyszíni élő TensorFlow ” vagy „távoli élő TensorFlow ” érhető el. A helyszíni élő képzéseket helyi ügyfelek telephelyén lehet végrehajtani Magyarország vagy a NobleProg vállalati képzési központjain Magyarország . A távoli élő képzést interaktív, távoli asztalon végzik. NobleProg - a helyi képzési szolgáltató

Machine Translated

Vélemények

★★★★★
★★★★★

TensorFlow Course Outlines

Kurzusnév
Időtartalma
Összefoglaló
Kurzusnév
Időtartalma
Összefoglaló
28 hours
Összefoglaló
This is a 4 day course introducing AI and it's application. There is an option to have an additional day to undertake an AI project on completion of this course.
21 hours
Összefoglaló
TensorFlow Lite is an open source deep learning framework for mobile devices and embedded systems.

This instructor-led, live training (online or onsite) is aimed at developers who wish to use TensorFlow Lite to develop iOS mobile applications with deep learning capabilities.

By the end of this training, participants will be able to:

- Install and configure TensorFlow Lite.
- Understand the principles behind TensorFlow and machine learning on mobile devices.
- Load TensorFlow Models onto an iOS device.
- Run an iOS application capable of detecting and classifying an object captured through the device's camera.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
35 hours
Összefoglaló
TensorFlow ™ egy nyílt forráskódú szoftverkönyvtár, amely numerikus számítást végez adatfolyam-grafikonok használatával.

A SyntaxNet egy neurális hálózat természetes nyelvi feldolgozási kerete a TensorFlow .

Word 2Vec-et használják a szavak "reprezentációinak" nevű vektorképeinek megtanulására. Word 2vec egy kifejezetten számítási szempontból hatékony prediktív modell a szavak beágyazásának megismerésére nyers szövegből. Két ízben, a Continuous Bag-of- Word modellben (CBOW) és a Skip-Gram modellben (3.1 és 3.2 fejezet Mikolov és munkatársai).

A tandemben használt SyntaxNet és a Word 2Vec lehetővé teszi a felhasználók számára, hogy a Természetes Nyelvi bemenetből készítsenek Tanulmányos beágyazási modelleket.

Közönség

Ez a kurzus olyan fejlesztők és mérnökök számára készült, akik a SyntaxNet és a Word 2Vec modellekkel a TensorFlow grafikonjaikban kívánnak dolgozni.

A kurzus befejezése után a küldöttek:

- megértsék a TensorFlow struktúráját és telepítési mechanizmusait
- képesnek kell lennie telepítési / gyártási környezet / architektúra feladatok és konfiguráció elvégzésére
- képesnek kell lennie a kód minőségének értékelésére, hibakeresésre, megfigyelésre
- képesnek kell lennie a fejlett gyártás, például a képzési modellek, a beágyazási feltételek, a grafikonok és a naplózás megvalósítására
7 hours
Összefoglaló
A Tenzorfeldolgozó egység (TPU) az a felépítés, amelyet a Google már több éve használ belsőleg, és most már elérhetővé válik a nagyközönség számára Számos optimalizálást tartalmaz, kifejezetten neurális hálózatokban történő használatra, beleértve az egyszerűsített mátrixszaporítást és 8 bites egész számokat a 16 bites helyett, hogy megfelelő szintű precizitást biztosítsanak Ebben az oktatott, élő képzésben a résztvevők megtanulják, hogyan használják ki a TPU processzorok innovációit, hogy maximalizálják a saját AI-alkalmazások teljesítményét A képzés végén a résztvevők képesek lesznek: A különböző típusú neurális hálózatok nagy mennyiségű adattovábbításra alkalmasak Használja a TPU-kat a következtetési folyamat legfeljebb két nagyságrenddel történő felgyorsításához Használja a TPU-t intenzív alkalmazások feldolgozásához, mint pl Képkeresés, felhőkép és fotók Közönség Fejlesztők kutatók mérnökök Adatkutatók A tanfolyam formátuma Részelőadás, vitafórumok, gyakorlatok és nehéz handson gyakorlat .
21 hours
Összefoglaló
TensorFlow Extended (TFX) is an end-to-end platform for deploying production ML pipelines.

This instructor-led, live training (online or onsite) is aimed at data scientists who wish to go from training a single ML model to deploying many ML models to production.

By the end of this training, participants will be able to:

- Install and configure TFX and supporting third-party tools.
- Use TFX to create and manage a complete ML production pipeline.
- Work with TFX components to carry out modeling, training, serving inference, and managing deployments.
- Deploy machine learning features to web applications, mobile applications, IoT devices and more.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
28 hours
Összefoglaló
Ez a kurzus konkrét példákkal vizsgálja a Tensor Flow alkalmazását a képfelismerés céljára

Közönség

Ez a kurzus olyan mérnökök számára készült, akik a TensorFlow t a TensorFlow céljából kívánják felhasználni

A kurzus befejezése után a küldöttek:

- megértsék a TensorFlow struktúráját és telepítési mechanizmusait
- telepítési / gyártási környezet / architektúra feladatokat és konfigurációt végez
- a kód minőségének értékelése, hibakeresés, monitorozás
- fejlett gyártást, például képzési modelleket, grafikonokat és naplózást valósít meg
21 hours
Összefoglaló
TensorFlow a Go ogle nyílt forráskódú szoftverkönyvtárának második generációs API-ja a Deep Learning . A rendszer célja a gépi tanulás kutatásának megkönnyítése, valamint a kutatási prototípusról a termelési rendszerbe való átmenet gyors és egyszerű megvalósítása.

Közönség

Ez a kurzus olyan mérnökök számára készült, akik a TensorFlow t szeretnék használni a Deep Learning projektjeikhez

A kurzus befejezése után a küldöttek:

- megértsék a TensorFlow struktúráját és telepítési mechanizmusait
- képesnek kell lennie telepítési / gyártási környezet / architektúra feladatok és konfiguráció elvégzésére
- képesnek kell lennie a kód minőségének értékelésére, hibakeresésre, megfigyelésre
- képesnek kell lennie a fejlett gyártás, például a képzési modellek, grafikonok és naplózás megvalósítására
7 hours
Összefoglaló
A TensorFlow Serving egy olyan rendszer, amely a gépi tanulás (ML) modellek gyártására szolgál Ebben az oktatott, élő képzésben a résztvevők megtanulják, hogyan konfigurálják és használják a TensorFlow Serving-ot az ML-modellek telepítési környezetben történő telepítéséhez és kezeléséhez A képzés végére a résztvevők képesek lesznek: Vonattal, exportálással és különböző TensorFlow modellek szolgáltatásaival Algoritmusok tesztelése és telepítése egyetlen architektúrával és API-k készletével TensorFlow Támogatás kiterjesztése a TensorFlow modelleken kívüli más típusok kiszolgálására Közönség Fejlesztők Adatkutatók A tanfolyam formátuma Részelőadás, vitafórumok, gyakorlatok és nehéz handson gyakorlat .
21 hours
Összefoglaló
TensorFlow Lite for Microcontrollers is a port of TensorFlow Lite designed to run machine learning models on microcontrollers and other devices with limited memory.

This instructor-led, live training (online or onsite) is aimed at engineers who wish to write, load and run machine learning models on very small embedded devices.

By the end of this training, participants will be able to:

- Install TensorFlow Lite.
- Load machine learning models onto an embedded device to enable it to detect speech, classify images, etc.
- Add AI to hardware devices without relying on network connectivity.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
21 hours
Összefoglaló
TensorFlow Lite is an open source deep learning framework for mobile devices and embedded systems.

This instructor-led, live training (online or onsite) is aimed at developers who wish to use TensorFlow Lite to develop mobile applications with deep learning capabilities.

By the end of this training, participants will be able to:

- Install and configure TensorFlow Lite.
- Understand the principles behind TensorFlow, machine learning and deep learning.
- Load TensorFlow Models onto an Android device.
- Enable deep learning and machine learning functionality such as computer vision and natural language recognition in a mobile application.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
- To learn more about TensorFlow, please visit: https://www.tensorflow.org/lite/
28 hours
Összefoglaló
A Deep Learning NLP lehetővé teszi a gép számára, hogy egyszerűen leegyszerűsítse a nyelvi feldolgozást A jelenleg rendelkezésre álló feladatok közül a nyelvfordítás és a képaláírás-generálás a fotók számára A DL (Deep Learning) az ML (Machine Learning) részhalmaza A Python egy népszerű programozási nyelv, amely könyvtárakat tartalmaz a Deep Learning NLP számára Ebben az oktatott, élő képzésben a résztvevők megtanulják használni a Python könyvtárakat az NLP-hez (Natural Language Processing), mivel létrehoznak egy alkalmazást, amely képeket dolgoz fel és képeket generál A képzés végére a résztvevők képesek lesznek: Tervezés és kód NLL számára a Python könyvtárak használatával Hozzon létre egy Python kódot, amely egy lényegesen nagy gyűjteményből álló képet gyűjt össze és kulcsszavakat generál Olyan Python kódot hoz létre, amely feliratokat generál a felderített kulcsszavakból Közönség A nyelvtudással foglalkozó programozók A programozók, akik megértik az NLP (Natural Language Processing) A tanfolyam formátuma Részelőadás, vitafórumok, gyakorlatok és nehéz handson gyakorlat .
21 hours
Összefoglaló
TensorFlow Lite is an open source deep learning framework for executing models on mobile and embedded devices with limited compute and memory resources.

This instructor-led, live training (online or onsite) is aimed at developers who wish to use TensorFlow Lite to deploy deep learning models on embedded devices.

By the end of this training, participants will be able to:

- Install and configure Tensorflow Lite on an embedded device.
- Understand the concepts and components underlying TensorFlow Lite.
- Convert existing machine learning models to TensorFlow Lite format for execution on embedded devices.
- Work within the limitations of small devices and TensorFlow Lite, while learning how to expand their default capabilities.
- Deploy deep learning models on embedded devices running Linux to solve physical world problems such as recognizing images and voice, predicting patterns, and initiating movements and responses from robots and other embedded systems in the field.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
14 hours
Összefoglaló
TensorFlow.js is a JavaScript framework for machine learning. TensorFlow.js enables users to build and train machine learning models directly in JavaScript.

This instructor-led, live training (online or onsite) is aimed at data scientists who wish to use TensorFlow.js to identify patterns and generate predictions through machine learning models.

By the end of this training, participants will be able to:

- Build and train machine learning models with TensorFlow.js.
- Run machine learning models in the browser or under Node.js.
- Retrain pre-existing machine learning models using custom data.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
21 hours
Összefoglaló
TensorFlow egy népszerű és gépi tanulási könyvtár, amelyet a Go ogle fejlesztett ki a mély tanulás, numerikus számítás és nagyméretű gépi tanulás céljából. TensorFlow 2.0, amely 2019. TensorFlow jelent meg, a TensorFlow legújabb verziója, amely javítja a lelkes végrehajtást, a kompatibilitást és az API-konzisztenciát.

Ez az oktató által irányított, élő (helyszíni vagy távoli) képzés azon fejlesztőknek és adattudósoknak szól, akik a Tensorflow 2.0-t előrejelzők, osztályozók, generációs modellek, neurális hálózatok stb. Felépítésére kívánják használni.

A képzés végére a résztvevők képesek lesznek:

- Telepítse és konfigurálja a TensorFlow 2.0 TensorFlow .
- Ismerje meg a TensorFlow 2.0 előnyeit a korábbi verziókhoz képest.
- Építsen mély tanulási modelleket.
- Végezzen el egy fejlett képosztályt.
- Telepítse a mélyreható tanulási modellt a felhő, a mobil és az internet tárgyakba.

A tantárgy formátuma

- Interaktív előadás és beszélgetés.
- Sok gyakorlat és gyakorlat.
- Gyakorlati megvalósítás élő laboratóriumi környezetben.

Tanfolyam testreszabási lehetőségek

- Ha személyre szabott képzést szeretne kérni erre a kurzusra, kérjük vegye fel velünk a kapcsolatot, hogy megbeszélést szervezzen.
- Ha többet szeretne megtudni a TensorFlow , látogasson el a https://www.tensorflow.org/ TensorFlow .
28 hours
Összefoglaló
Ez a tanfolyam ismereteket fog nyújtani az idegi hálózatokban és általában a gépi tanulási algoritmusban, a mély tanulásban (algoritmusok és alkalmazások).

Ez a képzés nagyobb hangsúlyt alapjait, de segít kiválasztani a megfelelő technológia: TensorFlow , Caffe , Teano, DeepDrive, Keras stb A példák készülnek TensorFlow .
14 hours
Összefoglaló
TensorFlow is an open source machine learning library. TensorFlow provides users the ability to use and create artificial intelligence for detecting and predicting fraud.

This instructor-led, live training (online or onsite) is aimed at data scientists who wish to use TensorFlow to analyze potential fraud data.

By the end of this training, participants will be able to:

- Create a fraud detection model in Python and TensorFlow.
- Build linear regressions and linear regression models to predict fraud.
- Develop an end-to-end AI application for analyzing fraud data.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
14 hours
Összefoglaló
A projektor beágyazása egy nyílt forráskódú webes alkalmazás, amely a gépi tanulási rendszerek vonatozásához használt adatok vizualizálására szolgál A Google által létrehozott része a TensorFlow része Ez az oktatott, élő képzés bemutatja az Embedding Projector mögött álló fogalmakat, és a résztvevőket egy demo projekt létrehozásával végzi A képzés végére a résztvevők képesek lesznek: Fedezze fel, hogyan értelmezik az adatokat a gépi tanulási modellek Keresse meg a 3D és a 2D nézet adatokat, hogy megértse, hogyan értelmezi a gépi tanulási algoritmus Megérteni a beágyazások mögött rejlő fogalmakat és azok szerepét a matematikai vektorok ábrázolásához képekhez, szavakhoz és számokhoz Fedezze fel egy adott beágyazás tulajdonságait, hogy megértse a modell viselkedését Alkalmazzon beágyazási projektet a realworld-alkalmazásokra, ilyen például a zenés szerelmeseinek szóló dal ajánlásrendszere Közönség Fejlesztők Adatkutatók A tanfolyam formátuma Részelőadás, vitafórumok, gyakorlatok és nehéz handson gyakorlat .
21 hours
Összefoglaló
Közönség

Ez a tanfolyam alkalmas Deep Learning és mérnökök számára, akik a rendelkezésre álló eszközök (többnyire nyílt forráskódú) felhasználásáról érdeklődnek a számítógépes képek elemzése céljából

Ez a tanfolyam példákat mutat be.
35 hours
Összefoglaló
Ez a tanfolyam azzal kezdődik, hogy fogalmi ismereteket adunk neurális hálózatokban és általában gépi tanulási algoritmusban, mély tanulásban (algoritmusok és alkalmazások).

Part 1 (40%) ez a képzés nagyobb hangsúlyt alapjait, de segítünk választotta a megfelelő technológia: TensorFlow , Caffe , Theano, DeepDrive, Keras stb

A képzés 2. része (20%) bemutatja a Theano-t - egy python könyvtárat, amely megkönnyíti a mély tanulási modellek írását.

A képzés 3. részét (40%) nagymértékben a Tensorflow - a Go ogle nyílt forráskódú szoftverek könyvtárának 2. generációs API-ján alapszik - a Deep Learning . A példákat és a kézbesítést a TensorFlow ban TensorFlow .

Közönség

Ez a tanfolyam azoknak a mérnököknek szól, akik a TensorFlow ot szeretnék használni Deep Learning projektjeikhez

A kurzus befejezése után a küldöttek:

-

jól megértsék a mély ideghálózatokat (DNN), CNN és RNN

-

megérti a TensorFlow szerkezetét és telepítési mechanizmusait

-

képesnek kell lennie a telepítési / gyártási környezeti / építészeti feladatok elvégzésére és a konfigurációra

-

képesnek kell lennie a kódminőség értékelésére, a hibakeresés, a monitorozás végrehajtására

-

képes legyen fejlett termelést megvalósítani, mint például képzési modellek, építési grafikonok és naplózás
Online TensorFlow courses, Weekend TensorFlow courses, Evening TensorFlow training, TensorFlow boot camp, TensorFlow instructor-led, Weekend TensorFlow training, Evening TensorFlow courses, TensorFlow coaching, TensorFlow instructor, TensorFlow trainer, TensorFlow training courses, TensorFlow classes, TensorFlow on-site, TensorFlow private courses, TensorFlow one on one training

Kedvezmények tanfolyamokra

Hírlevél kedvezmény

Tiszteletben tartjuk az Ön e-mail címét. Nem fogjuk továbbítani és nem adjuk el a címet más feleknek. Bármikor megváltoztathatja preferenciáit vagy leiratkozhat.

Néhány ügyfelünk

is growing fast!

We are looking for a good mixture of IT and soft skills in Hungary!

As a NobleProg Trainer you will be responsible for:

  • delivering training and consultancy Worldwide
  • preparing training materials
  • creating new courses outlines
  • delivering consultancy
  • quality management

At the moment we are focusing on the following areas:

  • Statistic, Forecasting, Big Data Analysis, Data Mining, Evolution Alogrithm, Natural Language Processing, Machine Learning (recommender system, neural networks .etc...)
  • SOA, BPM, BPMN
  • Hibernate/Spring, Scala, Spark, jBPM, Drools
  • R, Python
  • Mobile Development (iOS, Android)
  • LAMP, Drupal, Mediawiki, Symfony, MEAN, jQuery
  • You need to have patience and ability to explain to non-technical people

To apply, please create your trainer-profile by going to the link below:

Apply now!

This site in other countries/regions