áttekintés
A szolgáltatók (CSP) nyomást gyakorolnak a költségek csökkentésére és az átlagos felhasználói bevétel (ARPU) maximalizálására, miközben kiváló ügyfélélményt biztosítanak, de az adatok mennyisége tovább növekszik. A globális mobil adatforgalom növekedni fog egy kombinált éves növekedési ütemben (CAGR) 78 százalékkal 2016-ra, elérve a 10,8 exabyt havonta.
Eközben a CSP-k nagy mennyiségű adatot generálnak, beleértve a hívási részleteket (CDR), a hálózati adatokat és az ügyféladatokat. Azok a cégek, amelyek teljes mértékben kihasználják ezeket az adatokat, versenyképes küszöböt szereznek. A The Economist Intelligence Unit közelmúltbeli felmérése szerint az adatközpontú döntéshozatalt használó vállalatok 5-6% -os termelékenységnövekedést élveznek. Azonban a vállalatok 53 százaléka csak az értékes adataik felét használja fel, és a megkérdezettek egyharmada megjegyezte, hogy a hasznos adatok hatalmas mennyiségét nem használják fel. Az adatok mennyisége olyan magas, hogy a kézi elemzés lehetetlen, és a legtöbb örökletes szoftverrendszer nem tudja megtartani, ami értékes adatokat hagy el vagy figyelmen kívül hagy.
Big Data & Analytics’ nagy sebességű, méretezhető nagy adat szoftverrel a CSP-k minálhatják az összes adatukat a jobb döntéshozatal érdekében kevesebb idő alatt. Különböző termékek és technikák végső szoftver platformot biztosítanak a nagy adatokból származó betekintések gyűjtésére, előkészítésére, elemzésére és bemutatására. Az alkalmazási területek közé tartozik a hálózati teljesítmény nyomon követése, a csalás kimutatása, az ügyfélhullám kimutatása és a hitelkockázatelemzés. Big Data & Analytics termékek skála kezelni terabytes adatokat, de az ilyen eszközök végrehajtása új típusú felhőalapú adatbázis rendszer, mint a Hadoop vagy a tömeges skála párhuzamos számítógépes processzor ( KPU stb.)
Ez a tanfolyam dolgozik Big Data BI for Telco fedezi az összes feltörekvő új területeket, amelyekben a CSP-k befektetnek a termelékenység növelése és megnyitása új üzleti bevételi áram. A kurzus teljes 360 fokos áttekintést nyújt a Big Data BI-ről a Telco-ban, hogy a döntéshozók és a vezetők nagyon széles és átfogó áttekintést kapjanak a Big Data BI lehetőségekről a Telco-ban a termelékenység és a bevételi nyereség érdekében.
kurzus célkitűzései
A kurzus fő célja, hogy új Big Data üzleti intelligencia technikákat vezessen be 4 ágazatban Telecom Business (Marketing/Sales, Network Operation, Financial Operation és Customer Relation Management). A diákokat be kell mutatni a következőkre:
- Bevezetés Big Data-mi a 4Vs (volumen, sebesség, sokszínűség és valószínűség) a Big Data- Generáció, kivonás és menedzsment a Telco perspektívából
- Hogyan különbözik az elemző az öröklési adatok elemzőjétől
- Otthoni indokolás Big Data -Telco perspektívája
- Bevezetés a Hadoop Ökoszisztéma- ismerkedés az összes Hadoop eszközök, mint a Hive, Pig, SPARC – mikor és hogyan használják megoldani Big Data problémát
- Hogyan Big Data kivonható elemezni az analitikai eszköz-hogyan Business Analysis’s csökkentheti a fájdalompontok gyűjtése és elemzése az adatok révén integrált Hadoop dashboard megközelítés
- Az Insight elemzés, a vizualizációs elemzés és az előrejelzési elemzés alapvető bemutatása a Telco számára
- Az ügyfélszóró elemzés és a Big Data-how Big Data elemzés csökkenti az ügyfélszórót és az ügyfél elégedetlenségét a Telco-ügyvizsgálatokban
- Hálózati hibák és szolgáltatási hibák elemzése a Hálózati meta-adatokból és az IPDR-ből
- Pénzügyi elemzés - csalás, csalás és ROI becslés az értékesítésből és az üzemeltetési adatokból
- Ügyfél beszerzési probléma-cél marketing, ügyfél szegmentáció és cross-sales az értékesítési adatokból
- Bevezetés és összefoglaló az összes Big Data analitikai termékről és arról, hogy hol illeszkednek a Telco analitikai térbe
- Következtetés-hogyan lehet lépésről lépésre megközelíteni Big Data Business Intelligence bevezetését a szervezetbe
Célközönség
- Hálózati üzemeltetések, Pénzügyi Menedzserek, CRM menedzserek és vezető IT menedzserek a Telco CIO irodájában.
- Business Az elemzők a Telco
- CFO irodai menedzserek / elemzők
- Operációs menedzserek
- QA menedzserek
Olvass tovább...