Köszönjük, hogy elküldte érdeklődését! Csapatunk egyik tagja hamarosan felveszi Önnel a kapcsolatot.
Köszönjük, hogy elküldte foglalását! Csapatunk egyik tagja hamarosan felveszi Önnel a kapcsolatot.
Kurzusleírás
Introduction to Custom Operator Development
- Why build custom operators? Use cases and constraints
- CANN runtime structure and operator integration points
- Overview of TBE, TIK, and TVM in the Huawei AI ecosystem
Using TIK for Low-Level Operator Programming
- Understanding the TIK programming model and supported APIs
- Memory management and tiling strategy in TIK
- Creating, compiling, and registering a custom op with CANN
Testing and Validating Custom Ops
- Unit testing and integration testing of ops in the graph
- Debugging kernel-level performance issues
- Visualizing op execution and buffer behavior
TVM-Based Scheduling and Optimization
- Overview of TVM as a compiler for tensor ops
- Writing a schedule for a custom op in TVM
- TVM tuning, benchmarking, and code generation for Ascend
Integration with Frameworks and Models
- Registering custom ops for MindSpore and ONNX
- Verifying model integrity and fallback behavior
- Supporting multi-operator graphs with mixed precision
Case Studies and Specialized Optimizations
- Case study: high-efficiency convolution for small input shapes
- Case study: memory-aware attention operator optimization
- Best practices in custom op deployment across devices
Summary and Next Steps
Követelmények
- Strong knowledge of AI model internals and operator-level computation
- Experience with Python and Linux development environments
- Familiarity with neural network compilers or graph-level optimizers
Audience
- Compiler engineers working on AI toolchains
- Systems developers focused on low-level AI optimization
- Developers building custom ops or targeting novel AI workloads
14 Órák