Introduction to R Kurzusok

Kurzuskód

rintro

Duration

21 hours (usually 3 days including breaks)

Követelmények

Good understanding of statistics.

Overview

R egy nyílt forráskódú szabad programozási nyelv a statisztikai számításhoz, az adatok elemzéséhez és a grafika számára R a növekvő számú vezetők és adatelemzők a vállalatokon és az egyetemeken belül használják R szintén megtalálta a követőket a statisztikusok, a mérnökök és a tudósok között olyan számítógépes programozási készségek nélkül, akik könnyű használni Népszerűsége az adatbányászat egyre növekvő igénybevételének köszönhető, különféle célok, például a hirdetési árak beállítása, az új gyógyszerek gyorsabb vagy finomabb pénzügyi modellek miatt R az adatbányászati ​​csomagok széles választékával rendelkezik Ez a kurzus lefedi az R tárgyak manipulálását, beleértve az adatok olvasását, az R csomagok elérését, az R funkciók írását és az informatív grafikonok készítését Ez magában foglalja az adatok elemzését közös statisztikai modellekkel A kurzus tanítja, hogyan kell használni az R szoftvert ( http://wwwrprojectorg ) mind parancssorban, mind grafikus felhasználói felületen (GUI) .

Machine Translated

Kurzusleírás

Introduction and preliminaries

  • Making R more friendly, R and available GUIs
  • The R environment
  • Related software and documentation
  • R and statistics
  • Using R interactively
  • An introductory session
  • Getting help with functions and features
  • R commands, case sensitivity, etc.
  • Recall and correction of previous commands
  • Executing commands from or diverting output to a file
  • Data permanency and removing objects

Simple manipulations; numbers and vectors

  • Vectors and assignment
  • Vector arithmetic
  • Generating regular sequences
  • Logical vectors
  • Missing values
  • Character vectors
  • Index vectors; selecting and modifying subsets of a data set
  • Other types of objects

Objects, their modes and attributes

  • Intrinsic attributes: mode and length
  • Changing the length of an object
  • Getting and setting attributes
  • The class of an object

Ordered and unordered factors

  • A specific example
  • The function tapply() and ragged arrays
  • Ordered factors

Arrays and matrices

  • Arrays
  • Array indexing. Subsections of an array
  • Index matrices
  • The array() function
    • Mixed vector and array arithmetic. The recycling rule
  • The outer product of two arrays
  • Generalized transpose of an array
  • Matrix facilities
    • Matrix multiplication
    • Linear equations and inversion
    • Eigenvalues and eigenvectors
    • Singular value decomposition and determinants
    • Least squares fitting and the QR decomposition
  • Forming partitioned matrices, cbind() and rbind()
  • The concatenation function, (), with arrays
  • Frequency tables from factors

Lists and data frames

  • Lists
  • Constructing and modifying lists
    • Concatenating lists
  • Data frames
    • Making data frames
    • attach() and detach()
    • Working with data frames
    • Attaching arbitrary lists
    • Managing the search path

Reading data from files

  • The read.table()function
  • The scan() function
  • Accessing builtin datasets
    • Loading data from other R packages
  • Editing data

Probability distributions

  • R as a set of statistical tables
  • Examining the distribution of a set of data
  • One- and two-sample tests

Grouping, loops and conditional execution

  • Grouped expressions
  • Control statements
    • Conditional execution: if statements
    • Repetitive execution: for loops, repeat and while

Writing your own functions

  • Simple examples
  • Defining new binary operators
  • Named arguments and defaults
  • The '...' argument
  • Assignments within functions
  • More advanced examples
    • Efficiency factors in block designs
    • Dropping all names in a printed array
    • Recursive numerical integration
  • Scope
  • Customizing the environment
  • Classes, generic functions and object orientation

Statistical models in R

  • Defining statistical models; formulae
    • Contrasts
  • Linear models
  • Generic functions for extracting model information
  • Analysis of variance and model comparison
    • ANOVA tables
  • Updating fitted models
  • Generalized linear models
    • Families
    • The glm() function
  • Nonlinear least squares and maximum likelihood models
    • Least squares
    • Maximum likelihood
  • Some non-standard models

Graphical procedures

  • High-level plotting commands
    • The plot() function
    • Displaying multivariate data
    • Display graphics
    • Arguments to high-level plotting functions
  • Low-level plotting commands
    • Mathematical annotation
    • Hershey vector fonts
  • Interacting with graphics
  • Using graphics parameters
    • Permanent changes: The par() function
    • Temporary changes: Arguments to graphics functions
  • Graphics parameters list
    • Graphical elements
    • Axes and tick marks
    • Figure margins
    • Multiple figure environment
  • Device drivers
    • PostScript diagrams for typeset documents
    • Multiple graphics devices
  • Dynamic graphics

Packages

  • Standard packages
  • Contributed packages and CRAN
  • Namespaces

Ajánlások

★★★★★
★★★★★

Hasonló kategóriák

Course Discounts

Hírlevél kedvezmény

Tiszteletben tartjuk adatai bizalmas jellegét. A NobleProg soha nem továbbítja e-mail címét harmadik személyeknek.
Hírlevelünkről bármikor leiratkozhat.

Kiemelt ügyfeleink

is growing fast!

We are looking to expand our presence in Hungary!

As a Business Development Manager you will:

  • expand business in Hungary
  • recruit local talent (sales, agents, trainers, consultants)
  • recruit local trainers and consultants

We offer:

  • Artificial Intelligence and Big Data systems to support your local operation
  • high-tech automation
  • continuously upgraded course catalogue and content
  • good fun in international team

If you are interested in running a high-tech, high-quality training and consulting business.

Apply now!